Cálculo y diseño de un mecanismo flexible de fuerza constante como actuador en una máquina de ensayos de desgaste entre pantógrafo y catenaria

Contenido principal del artículo

Vid Bacic
https://orcid.org/0009-0008-9073-3633
Rafael Jesús Luque Aguilar
https://orcid.org/0009-0003-9284-6539
Pedro Reyes Zúñiga
https://orcid.org/0009-0005-9768-7834
Montserrat Simarro Vega
Sergio Postigo Pozo
https://orcid.org/0000-0002-2333-1764
Juan Jesús Castillo Aguilar
https://orcid.org/0000-0002-1503-4890

Resumen

Se presenta el diseño de un mecanismo flexible que genera una fuerza de contacto constante entre
pantógrafo y catenaria que se integrará en una máquina de ensayos para estudiar el desgaste del
pantógrafo, minimizando las fluctuaciones de fuerza causadas por perturbaciones y eliminando la
necesidad de sistemas de control de fuerza complejos.
Se ha realizado un estudio previo sobre los distintos métodos de síntesis de mecanismos flexibles de
fuerza constante y se han comparado diseños existentes a fin de concretar un punto de partida.
Para el diseño se ha empleado el método de combinación de rigideces, asociando en paralelo un
elemento de rigidez negativa y otro de rigidez positiva, ambas con el mismo valor absoluto para
que la rigidez equivalente del sistema sea nula. El elemento de rigidez negativa se ha resuelto
utilizando flejes biestables de acero aprovechando el cambio de rigidez al producirse el pandeo,
mientras que para el elemento de rigidez positiva se ha usado un mecanismo flexible en forma de
diamante, también hecho con flejes de acero asociados en serie.
La síntesis y el dimensionamiento de los componentes se han realizado a través de simulaciones de
elementos finitos en ANSYS, obteniéndose primero las dimensiones del elemento de rigidez negativa,
a partir de las que se han afinado las dimensiones del elemento de rigidez positiva para alcanzar la
fuerza constante. Con ello, se obtiene un diseño que únicamente permite grandes desplazamientos
en su dirección vertical, absorbiendo las cargas que se apliquen en otras direcciones.
Este desarrollo abre nuevas posibilidades para la aplicación de mecanismos flexibles de fuerza
constante en la industria ferroviaria y otros sistemas que requieren un control de fuerzas.

Detalles del artículo

Cómo citar
Bacic, V., Luque Aguilar, R. J., Reyes Zúñiga, P., Simarro Vega, M., Postigo Pozo, S., & Castillo Aguilar, J. J. (2025). Cálculo y diseño de un mecanismo flexible de fuerza constante como actuador en una máquina de ensayos de desgaste entre pantógrafo y catenaria. Anales De Ingeniería Mecánica, 1(24). https://doi.org/10.63450/aim.1.127.2025
Sección
Artículos
Biografía del autor/a

Rafael Jesús Luque Aguilar, Universidad de Málaga

Research staff with a double degree in Mechanical Engineering and Industrial Design (2023), Master in Advanced Mechanics (2024) and collaborating with the vehicle dynamics laboratory (2023-currently) from the University of Malaga. At present working on the development of integrated maintenance equipment for railway vehicles. Specifically, my work in the laboratory has been based until now on the design of a measuring device to be on-board a train, for monitoring electric arcs, wear zones and monitoring the geometry of railway catenary. I have also worked as a substitute professor at the University of Malaga in the area of Mechanical Engineering teaching the subject of Theory of Machines and Mechanical Systems.

Pedro Reyes Zúñiga, Universidad de Málaga

He is a Mechanical Engineer, specialized in CAD design, with solid experience in the manufacturing and development of parts. In recent years, he has been a key member of a research team dedicated to optimizing railway infrastructure, focusing his efforts on the catenary-pantograph interaction, a crucial factor in improving the efficiency and safety of electric transport. He is currently collaborating with the University of Málaga (UMA), where, along with his team, he is responsible for the design, programming, and manufacturing of machinery for conducting tests that allow for a deeper analysis of this system. His multidisciplinary team has achieved significant advancements, developing innovative solutions and collaborating on projects aimed at improving the stability and performance of railway infrastructure, making a substantial contribution to the advancement of the sector.

Montserrat Simarro Vega

2D and 3D mechanical design
Structural and thermal analysis of engineering problems with finite element models
Static, linear and non-linear analysis with metallic materials and composites
Dynamic analysis: force response, sine, random, Power Spectrum Density, Shock Impulse.
Fatigue analysis and test
Dynamic test: Power Spectrum Density, Shock Impulse & Acústicos
Analysis of signals in the time and frequency domain
Matlab programming
Project and staff management
Analysis of calls, writing of proposals, writing of technical reports, publication of scientific articles.
Customer and supplier management

Sergio Postigo Pozo, Universidad de Málaga

He is an Associate Professor at the University of Málaga, specializing in Mechanical, Thermal, and Fluid Engineering. His current research focuses on the interaction between pantograph and catenary systems in railways, a critical area for enhancing the performance and reliability of railway networks. Throughout his career, he has served as Principal Investigator in projects funded at the regional, national, and European levels, and has collaborated on contracts with companies in related industries​.

In teaching, he brings extensive experience, offering courses at both undergraduate and master's levels, covering general engineering topics as well as specialized subjects in the railway field. His academic contributions can be further explored on platforms such as ORCID, Google Scholar, and ResearchGate

Juan Jesús Castillo Aguilar

Industrial Engineer from the University of Málaga (1999). I am full professor in Mechanical Engineering since 2022. My experience encompasses more than 20 years of teaching and research activity within the Mechanical Engineering Department of the University of Malaga. Within my research career, I have worked mainly in three lines of research: development and improvement of systems related to vehicle safety, optimal mechanism synthesis, and, more recently, the study of the dynamic behavior of rigid catenary power systems on railways. I am co-author of more than 100 Scientific publications from my participation in national and international research projects. I am a co-inventor in 7 patents, 6 of them in the field of vehicles. 
I have participated in more than 15 contracts with companies and public institutions.

At the university of Malaga, I am responsible for courses related to transport engineering, industrial maintenance and vehicle technologies. I also coordinate the doctoral program in Mechanical Engineering and Energy Efficiency. I have been tutor of the UMA-Racing team, which has participated in five editions of the MOTOSTUDENT International competition, in which we have obtained great results, winning the competition in the electric category twice.

Citas

T. Kziazyk, E. Gavignet, P.-H. Cornuault, P. Baucour y D. Chamagne, «Review on Test Benches Studying Sliding Electrical Contact and Synthesis of Experimental Results,» Energies, 2023.

S. Midya, D. Bormann, T. Schütte y R. Thottappillil, «DC Component From Pantograph Arcing in AC Traction System—Influencing Parameters, Impact, and Mitigation Techniques,» IEEE Transactions on Electromagnetic Compatibility, 2011.

L. L. Howell, S. P. Magleby y B. M. Olsen, Handbook of compliant mechanisms, Hoboken: John Wiley & Sons, 2013.

«Ferramsur,» [En línea]. Available: https://ferramsur.com.ar/producto/pinza-de-fuerza-tipo-atlas-10/. [Último acceso: 13 05 2024].

BYU-CMR, «A single-body compliant plier (vice grip) mechanism.,» 19 03 2019. [En línea]. Available: https://www.thingiverse.com/thing:3488009. [Último acceso: 13 05 2024].

J. A. Gallego Sánchez y J. L. Herder, «Synthesis Methods in Compliant Mechanisms: An Overview,» ASME 2009 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, 2009.

J. B. Hopkins y M. L. Culpepper, «Synthesis of precision serial flexure systems using freedom and constraint topologies (FACT),» Precsion Engineering, vol. 35, nº 4, 2011.

P. Wang y Q. Xu, «Design and modeling of constant-force mechanisms: A survey,» Mechanism and Machine Theory 119, 2017.

L. Chih-Hsing , C. Fu-Ming y H. Yuan-Ping , «Topology Optimization for Design of a 3D-Printed Constant-Force Compliant Finger,» IEEE/ASME Transactions on Mechatronics, Vol.26, 2021.

Y. Miao y J. Zheng, «Optimization design of compliant constant-force mechanism for apple picking actuator,» Computers and Electronics in Agriculture, 2020.

X. Zhang y Q. Xu, «Design and Analysis of a Compound Constant-Force Mechanism for Compliant Gripper,» 2018.

C. Boyle, L. L. Howell, S. P. Magleby y M. S. Evans, «Dynamic modeling of compliant constant-force compression mechanisms,» Mechanism and Machine Theory, 2003.

Z. Kai, H. Yingge, L. Baokun y Z. Jie, «Design of Compliant Constant-force Mechanism based on Additional Spring Double-slider Four-bar Mechanism,» 2020.

K. A. Tolman, E. G. Merriam y L. L. Howell, «Compliant constant-force linear-motion mechanism,» Mechanism an Machine Theory, 2016.

X. Pei, J. Yu, G. Zong y S. Bi, «An effective pseudo-rigid-body method for beam-based compliant mechanisms,» Precision Engineering, vol. 34, nº 3, 2010.

O. Sigmund, «On the Design of Compliant Mechanisms Using Topology Optimization,» Journal of Structural Mechanics, 1997.

F. Wang, B. S. Lazarov y O. Sigmund, «On projection methods, convergence and robust formulations in topology optimization,» Struct Multidisc Optim, 2010.

S. Nishiwaki, M. I. Frecker, S. Min y N. Kikuchi, «Topology Optimizatiion of Compliant Mechanims Using the Homogeneization Method,» International Journal for Numerial Methods in Engineering, 1998.

F. Ma y G. Chen, «Chained Beam-Constraint-Model (CBCM): A Powerful Tool for Modeling Large and Complicated Deflections of Flexible Beams in Compliant Mechanisms,» ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2014.

B. Ding, X. Li y Y. Li, «Configuration design and experimental verification of a variable constant-force compliant mechanism,» Robotica, vol. 40, 2022.

Z. Chen, L. Shuaishuai, L. Pngbo y Y. Peng, «Design of a locust leg-like compliant constant-force mechanism supporting large-scale damage-free manipulation,» Review of Scientific Instruments, 2023.

R. Frisch-Fay, Flexible bars, Butterworths, 1962.

S. Sen, Beam Constraint Model: Generalized Nonlinear Closed-form Modeling of Beam Flexures for Flexure Mechanism Design, 2013.

Y. Liu y Q. Xu, «Design of a Compliant Constant Force Gripper Mechanism Based on Buckled Fixed-Guided Beam,» 2016 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS), 2016.

HBK, «Monitorización de Pantógrafos,» [En línea]. Available: https://www.hbm.com/es/10479/transporte-ferroviario-monitorizacion-de-pantografos-y-catenarias/?product_type_no=Transporte%20ferroviario:%20monitorizaci%C3%B3n%20de%20pant%C3%B3grafos%20y%20c. [Último acceso: 06 2024].

E. Martín, J. A. Picas, M. T. Baile y S. Menarques, «Materiales avanzados para la mejora del comportamiento del sistema tribológico catenaria-pantógrafo,» Interempresas Ferrocarril, 2016.

J. Carson y G. W. Wang, «An Introduction to Flexure Design,» 47th Aerospace Mechanisms Symposium, 2024.

«MatWeb,» [En línea]. Available: https://www.matweb.com/index.aspx. [Último acceso: 2024].

L. L. Howell, Compliant Mechanisms, New York: Joh Wiley & Sons, 2001.

L. Cao, A. T. Dolovich y W. Zhang, «Hybrid Compliant Mechanism Design Using a Mixed Mesh of Flexure Hinge Elements and Beam Eements Through Topology Optimization,» Journal of Mechanical Design 137(9), 2015.

J. B. Hopkins, «Design of Parallel Flexure Systems via Freedom and Constraint Topologies (FACT),» 2005.

M. . D. Berglund, S. . P. Magleby y L. L. Howell, «Design Rules for Selecting and Designing Compliant Mechanisms for Rigid-Body Replacement Synthesis,» ASME 2000 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2000.

J. Qiu, J. H. Lang y A. H. Slocum, «A Curved-Beam Bistable Mechanism,» Journal of Microelectromechanical Systems, vol. 13, nº 2, 2004.

P. Cazottes, A. Fernandes, J. Pouget y M. Hafez, «Bistable Buckled Beam: Modeling of Actuating Force and Experimentl Validations,» Journal of Mechanical Design, vol. 131, 2009.

Artículos más leídos del mismo autor/a