Estudio de la fabricación aditiva para su aplicación en el reperfilado de ruedas de ferrocarril desgastadas por su uso

Contenido principal del artículo

Jon Hernandez-Martinez
https://orcid.org/0009-0008-8454-2312
Javier Santamaria
https://orcid.org/0000-0001-8267-8752
Aizpea Urresti
https://orcid.org/0000-0002-1768-8206
Julio Blanco-Lorenzo
Ernesto Garcia Vadillo
https://orcid.org/0000-0001-6676-1759

Resumen

La operación de reperfilado de ruedas ferroviarias consiste en un proceso de torneado que devuelve a la rueda desgastada su perfil original. Esto implica que, cuando el desgaste se produce principalmente en la pestaña de la rueda o provoca daños locales en la banda de rodadura, es necesario eliminar una cantidad considerable de material, reduciendo por tanto la vida útil y aumentando los costes de mantenimiento.


Para hacer frente a este problema, recientemente se ha propuesto la fabricación aditiva como una solución ideal. Concretamente, la tecnología de Deposición de Energía Dirigida o DED (Direct Energy Deposition) es conocida por su viabilidad a la hora de reparar daños locales con gran precisión, y ya ha sido utilizada para soldar y reparar carriles ferroviarios. Sin embargo, su aplicación a las ruedas de ferrocarril aún está siendo objeto de estudio, debido a los exigentes requisitos mecánicos y al adecuado comportamiento frente a desgaste que el material de la rueda debe alcanzar.


El objetivo de este estudio es investigar materiales de polvo metálico adecuados para el reperfilado de las ruedas de ferrocarril y comprobar que el resultado obtenido es adecuado para la rodadura ferroviaria atendiendo a las propiedades mecánicas alcanzadas. Los materiales comerciales empleados han sido AISI 4140, Stellite 6, 100Cr6, y AISI H13, los cuales han sido depositados sobre probetas extraídas de la banda de rodadura de una rueda utilizada hasta su servicio final. Por tanto, el material utilizado como sustrato es material endurecido, tratando de reproducir de esta manera las condiciones reales lo más fielmente posible.


La calidad de los recubrimientos se ha comprobado examinando la geometría de las uniones mediante un Microscopio Óptico, y la microestructura y tensiones residuales mediante técnicas de Fluorescencia de Rayos X y Difracción de Rayos X, respectivamente La consistencia de la unión también ha sido estudiada analizando la dureza del recubrimiento y su variación a lo largo de la profundidad. Se han realizado ensayos tribológicos para caracterizar el comportamiento de fricción y evaluar la resistencia al desgaste de las probetas con revestimiento frente al material de rueda no revestido.


Los resultados indican que el uso de la fabricación aditiva en ruedas ferroviarias resulta de especial interés para su uso en aplicaciones de reperfilado. Es posible conseguir una resistencia al desgaste adecuada y excelentes propiedades mecánicas en términos de dureza y tensiones residuales compresivas, y por consiguiente, apropiadas para una mayor resistencia a fatiga.

Detalles del artículo

Cómo citar
Hernandez-Martinez, J., Santamaria, J., Urresti, A., Blanco-Lorenzo, J., & Garcia Vadillo, E. (2025). Estudio de la fabricación aditiva para su aplicación en el reperfilado de ruedas de ferrocarril desgastadas por su uso. Anales De Ingeniería Mecánica, 1(24). https://doi.org/10.63450/aim.1.85.2025
Sección
Artículos

Citas

UNE-EN ISO 3095:2013, Railway applications - Acoustics - Measurement of noise emitted by railbound vehicles. International Organization for Standardization, 2013.

UNE-EN 12299:2010, Railway applications - Ride comfort for passengers - Measurement and evaluation. European Standard, 2010.

UNE-EN ISO 13715:2021, Railway applications - Wheelsets and bogies - Wheels - Tread profile. International Organization for Standardization, 2021.

Åhrén T., Waara P., Larsson-Kråik P.-O., “Technical and economic evaluation of maintenance for rail and wheels on Malmbanan,” in Implementation of heavy haul technology for network efficiency: proceedings: International Heavy Haul Conference, Dallas, Texas, May 5-9, 2001, International Heavy Haul Association, 2003, pp. 5.81–5.86.

Shen M., Mei L., Gong F., Li C., Li Q., “Damage behaviour of rail flash-butt welding joints under controlled impact kinetic energy,” Wear, vol. 552–553, p. 205435, Aug. 2024, doi: 10.1016/J.WEAR.2024.205435.

Pereira H. B., Echeverri E. A. A., Alves L. H. D., Yildirimli K., Lewis R., Goldenstein H., “Influence of HAZ microstructure on RCF under twin-disc test of a flash-butt welded rail,” Wear, vol. 546–547, p. 205324, Jun. 2024, doi: 10.1016/J.WEAR.2024.205324.

Vafadar A., Guzzomi F., Rassau A., Hayward K., “Advances in Metal Additive Manufacturing: A Review of Common Processes, Industrial Applications, and Current Challenges,” Applied Sciences, vol. 11, no. 3, 2021, doi: 10.3390/app11031213.

Nellian A. S., Pang J. H. L., “Laser metal deposition characterization study of metal additive manufacturing repair of rail steel specimens,” Virtual Phys Prototyp, vol. 18, no. 1, p. e2134042, Jan. 2023, doi: 10.1080/17452759.2022.2134042.

Nellian A. S., Tan K. E., Hoh H. J., Pang J. H. L., Christian I., Chua S. Y., “Microstructure and Wear Performance Assessment of Laser Cladded Rail Steel for Service Life Extension at Sharp-Radius Curves,” in 2018 International Conference on Intelligent Rail Transportation (ICIRT), 2018, pp. 1–5, doi: 10.1109/ICIRT.2018.8641613.

Lewis S. R., Fletcher D. I., “Assessment of laser cladding as an option for repairing/enhancing rails,” Wear, vol. 330–331, pp. 581–591, May 2015, doi: 10.1016/J.WEAR.2015.02.027.

Vasić G., Franklin F. J., “Plastic deformation and crack initiation in hard pearlitic rail steels,” in IoM3 Conference on 20th Century Rail, York, United Kingdom, Nov. 2011.

Lewis S. R. et al., “Improving rail wear and RCF performance using laser cladding,” Wear, vol. 366–367, pp. 268–278, Nov. 2016, doi: 10.1016/J.WEAR.2016.05.011.

Roy T. et al., “Effect of deposition material and heat treatment on wear and rolling contact fatigue of laser cladded rails,” Wear, vol. 412–413, pp. 69–81, Oct. 2018, doi: 10.1016/J.WEAR.2018.07.001.

Fasihi P. et al., “Tribological Properties of Laser Cladded Alloys for Repair of Rail Components,” Materials, vol. 15, no. 21, 2022, doi: 10.3390/ma15217466.

Guo H. M., Wang Q., Wang W. J., Guo J., Liu Q. Y., Zhu M. H., “Investigation on wear and damage performance of laser cladding Co-based alloy on single wheel or rail material,” Wear, vol. 328–329, pp. 329–337, Apr. 2015, doi: 10.1016/J.WEAR.2015.03.002.

Wang W. J., Hu J., Guo J., Liu Q. Y., Zhu M. H., “Effect of laser cladding on wear and damage behaviors of heavy-haul wheel/rail materials,” Wear, vol. 311, no. 1–2, pp. 130–136, Mar. 2014, doi: 10.1016/J.WEAR.2014.01.011.

Wang W.-J., Fu Z.-K., Guo J., Zhang Y.-Q., Liu Q.-Y., Zhu M.-H., “Investigation on Wear Resistance and Fatigue Damage of Laser Cladding Coating on Wheel and Rail Materials under the Oil Lubrication Condition,” Tribology Transactions, vol. 59, no. 5, pp. 810–817, Sep. 2016, doi: 10.1080/10402004.2015.1107926.

Xiao Q. et al., “High-temperature tribological properties of coatings repaired by laser additive manufacturing on railway wheel tread damage,” Wear, vol. 520–521, p. 204674, May 2023, doi: 10.1016/J.WEAR.2023.204674.

Lu P., Lewis S. R., Fretwell-Smith S., Engelberg D. L., Fletcher D. I., Lewis R., “Laser cladding of rail; the effects of depositing material on lower rail grades,” Wear, vol. 438–439, p. 203045, Nov. 2019, doi: 10.1016/J.WEAR.2019.203045.

Fasihi P., Abrahams R., Mutton P., Yan W., “Tribological Properties of a New Alloy Laser Cladded on Hypereutectoid Rails,” J Tribol, vol. 143, no. 5, Apr. 2021, doi: 10.1115/1.4050896.

Xie T. et al., “Investigation on the Rolling Contact Fatigue Behaviors of Different Laser Cladding Materials on the Damaged Rail,” J Tribol, vol. 143, no. 5, Apr. 2021, doi: 10.1115/1.4050690.

Meng L., Zhu B., Hu Q., Zeng X., Wang D., “Laser-induction hybrid cladding of different coatings on rail surface: Microstructure, wear properties and contact fatigue behaviors,” Appl Surf Sci, vol. 566, p. 150678, Nov. 2021, doi: 10.1016/J.APSUSC.2021.150678.

Zhang B., He B., Wang H., “Microstructural investigation and mechanical performance of laser cladding repaired bainite steel with AerMet100 steel,” Surf Coat Technol, vol. 440, p. 128498, Jun. 2022, doi: 10.1016/J.SURFCOAT.2022.128498.

Tomlinson K., Fletcher D. I., Lewis R., “Evaluation of laser cladding as an in-situ repair method on rail steel,” Tribol Int, vol. 180, p. 108210, Feb. 2023, doi: 10.1016/J.TRIBOINT.2022.108210.

Yildirimli K., Tomlinson K., Fletcher D. I., Lewis R., “Small-scale testing of rail laser cladding longevity, parameter tolerance and in-situ repairs in preparation for field implementation,” in 12th International Conference on Contact Mechanics and Wear of Rail/Wheel Systems, Melbourne, Australia, Sep. 2022.

Wang W. J., Fu Z. K., Cao X., Guo J., Liu Q. Y., Zhu M. H., “The role of lanthanum oxide on wear and contact fatigue damage resistance of laser cladding Fe-based alloy coating under oil lubrication condition,” Tribol Int, vol. 94, pp. 470–478, Feb. 2016, doi: 10.1016/J.TRIBOINT.2015.10.017.

Fu Z. K., Ding H. H., Wang W. J., Liu Q. Y., Guo J., Zhu M. H., “Investigation on microstructure and wear characteristic of laser cladding Fe-based alloy on wheel/rail materials,” Wear, vol. 330–331, pp. 592–599, May 2015, doi: 10.1016/J.WEAR.2015.02.053.

Ding H. et al., “Effect of laser claddings of Fe-based alloy powder with different concentrations of WS2 on the mechanical and tribological properties of railway wheel,” Wear, vol. 488–489, p. 204174, Jan. 2022, doi: 10.1016/J.WEAR.2021.204174.

Zhu Y., Yang Y., Mu X., Wang W., Yao Z., Yang H., “Study on wear and RCF performance of repaired damage railway wheels: Assessing laser cladding to repair local defects on wheels,” Wear, vol. 430–431, pp. 126–136, Jul. 2019, doi: 10.1016/J.WEAR.2019.04.028.

Hernandez-Martinez J.; Santamaria J.; Arrizubieta J.I., Correa N., “Experimental evaluation of novel alloy powders for extending service life of railway wheels worn by use”, Wear, p. 205945, Feb. 2025, doi: 10.1016/J.WEAR.2025.205945.

UNE-EN 13262, Railway applications. Wheelsets and bogies. Wheels. Product requirements. European Standard, 2021.

Urresti A., Murua O., Arrizubieta J. I., Lamikiz A., “In-situ monitoring of the DED-LB process for defect detection,” Procedia CIRP, vol. 124, pp. 314–317, Jan. 2024, doi: 10.1016/J.PROCIR.2024.08.125.

ASTM G99-17, Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus. ASTM International, 2017.

Duan S., Ren W., Lei W., Wang Y., “Study on the microstructure and properties of rail cladding layer after laser quenching,” J Manuf Process, vol. 108, pp. 180–193, Dec. 2023, doi: 10.1016/J.JMAPRO.2023.10.079.

Li N., Wang Q., Niu W., Han P., Guo N., Li S., “Microstructure and wear behaviors of 17-4 PH stainless steel fabricated by laser cladding with post laser shock peening treatment,” Wear, vol. 538–539, p. 205207, Feb. 2024, doi: 10.1016/J.WEAR.2023.205207.

Kendall O., Fasihi P., Abrahams R. Paradowska A. “Application of a New Alloy and Post Processing Procedures for Laser Cladding Repairs on Hypereutectoid Rail Components,” Materials, vol. 15, no. 15, 2022, doi: 10.3390/ma15155447.

Narayanan A., Mostafavi M., Pirling T., Kabra S., “Residual stress in laser cladded rail,” Tribol Int, vol. 140, p. 105844, Dec. 2019, doi: 10.1016/J.TRIBOINT.2019.105844.

Chen W., Xu L., Han Y., Zhao L., Jing H., “Control of residual stress in metal additive manufacturing by low-temperature solid-state phase transformation: An experimental and numerical study,” Addit Manuf, vol. 42, p. 102016, Jun. 2021, doi: 10.1016/J.ADDMA.2021.102016.

Rahman Rashid R. A., Nazari K.A., Barr C., Palanisamy S., “Effect of laser reheat post-treatment on the microstructural characteristics of laser-cladded ultra-high strength steel,” Surf Coat Technol, vol. 372, pp. 93–102, Aug. 2019, doi: 10.1016/J.SURFCOAT.2019.05.021.

Wright R. N., “Relevant Aspects of Carbon and Low Alloy Steel Metallurgy,” Wire Technology, pp. 199–228, Jan. 2011, doi: 10.1016/B978-0-12-382092-1.00014-2.

Archard J. F., “Contact and Rubbing of Flat Surfaces,” Journal of Applied Physics, vol. 24, no. 8, pp. 981–988, 1953, doi: 10.1063/1.1721448.

Poshtahani A. G., Roostaie S., Azadi M., “Plasma nitriding effect on tribological and corrosion properties of Stellite 6 and 12 PTA weld clad hardfaced on stainless steel 410,” Results in Surfaces and Interfaces, vol. 11, p. 100108, May 2023, doi: 10.1016/J.RSURFI.2023.100108.

Suh J., Chun Y. B., Jin H. H., Kang S. H., Han H. N., “Control of the grain structure and wear behavior of a Y2O3 nanoparticle dispersed Stellite 6 alloy fabricated by laser-directed energy deposition,” J Alloys Compd, vol. 1002, p. 175326, Oct. 2024, doi: 10.1016/J.JALLCOM.2024.175326.

Ostolaza M., Zabala A., Arrizubieta J. I., Llavori I., Otegi N., Lamikiz A., “High-temperature tribological performance of functionally graded Stellite 6/WC metal matrix composite coatings manufactured by laser-directed energy deposition,” Friction, vol. 12, no. 3, pp. 522–538, 2024, doi: 10.1007/s40544-023-0790-2.

Glascott J., Stott F. H., Wood G. C., “The effectiveness of oxides in reducing sliding wear of alloys,” Oxidation of Metals, vol. 24, no. 3, pp. 99–114, 1985, doi: 10.1007/BF00664227.

Rowe W. B., “Mechanics of Abrasion,” Principles of Modern Grinding Technology, pp. 341–363, Jan. 2009, doi: 10.1016/B978-0-8155-2018-4.50023-9.

Rowe W.B., “Mechanics of Abrasion,” Principles of Modern Grinding Technology, pp. 341–363, Jan. 2009, doi: 10.1016/B978-0-8155-2018-4.50023-9.

Harrison H., “Producing and Measuring the 3rd Body Layer,” in Proceedings of the 2020 Joint Rail Conference, St. Louis, Missouri, USA: Joint Rail Conference, Apr. 2020, doi: 10.1115/JRC2020-8095.

Artículos más leídos del mismo autor/a