Control del desgaste ondulatorio en carriles con apoyo continuo
Contenido principal del artículo
Resumen
En este trabajo se estudia el efecto de diferentes factores en el desarrollo y crecimiento del desgaste ondulatorio de los carriles de una vía real de tranvía, mediante un modelo desarrollado, adaptado y validado por los autores. Para ello, en primer lugar, ha sido necesario obtener experimentalmente las propiedades de la vía y del eje montado de los tranvías, para lo cual se han medido sus receptancias. Por otro lado, se ha caracterizado la dureza de los materiales de las superficies en contacto y se han realizado mediciones de coeficiente de fricción en el contacto entre la rueda y el carril. Estas mediciones experimentales han sido esenciales para demostrar la variabilidad de las propiedades dinámicas de la vía del tranvía y para predecir el desgaste de los carriles. Los factores que se han considerado en este estudio son: los posibles defectos de soldadura, la geometría y las propiedades dinámicas de la vía. Los resultados de desgaste demuestran que la reparación de soldaduras desgastadas tiene un efecto positivo porque reduce el crecimiento de la corrugación y que, cuando la vía no presenta propiedades dinámicas constantes, la tasa de crecimiento de la corrugación se reduce considerablemente.
Detalles del artículo

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
CC BY-NC-SA 4.0)
El lector puede compartir, copiar y redistribuir el material en cualquier medio o formato, siempre y cuando cumpla con las siguientes condiciones:
-
Atribución (BY): Debe dar crédito adecuado al autor original, proporcionando un enlace a la licencia y señalando si se han realizado cambios.
-
No Comercial (NC): No puede utilizar el material con fines comerciales. Esto significa que no puede venderlo ni obtener ganancias directas de su uso.
-
Compartir Igual (SA): Si adapta, transforma o construye sobre el material, debe distribuir sus contribuciones bajo la misma licencia que el original.
Recuerda que esta licencia no afecta los derechos legales del autor, como el derecho moral o las excepciones de uso justo.
Citas
Torstensson, P. T., Nielsen, J. C. O., “Monitoring of rail corrugation growth due to irregular wear on a railway metro curve”, Wear 267, 556-561 (2009)
Vickerstaff, A., Marway, H., Tattersall, D., Vince, R., “Corrugation on London underground: What problem are we trying to solve”, Proceedings of the 12th International Conference on Contact Mechanics and Wear of Rail/Wheel Systems, 1-8, Melbourne (2022)
Suda, Y., Hanawa, M., Okumura, M., Iwasa, T., “Study on rail corrugation in sharp curves of commuter
line”, Wear 253, 193-198 (2002)
Daniel, W. J. T., Horwood, R. J., Meehan, P. A., Wheatley, N., “Analysis of rail corrugation in cornering”,
Wear 265, 1183-1192 (2008)
Wang, Z., Xu, Y., “Analysis of rail corrugation characteristics in the vehicle braking section of metro”,
Transactions of the Canadian Society for Mechanical Engineering 47, 588-595 (2023)
Chen, P., Zhu, W., Yu, C., Sun, N., Xue, W., “Research on train braking model by improved Polach model considering wheel‐rail adhesion characteristics”, IET Intelligent Transport Systems 17, 2432-2443 (2023)
Egana, J. I., Vinolas, J., Gil-Negrete, N., “Effect of liquid high positive friction (HPF) modifier on wheel-rail contact and rail corrugation”, Tribology International 38, 769-774 (2005)
Stock, R., Stanlake, L., Hardwick, C., Yu, M., Eadie, D., Lewis, R., “Material concepts for top of rail friction management – Classification, characterisation and application”, Wear 366-367, 225-232 (2016)
Polach, O., “Creep forces in simulations of traction vehicles running on adhesion limit”, Wear 258, 992-1000 (2005)
Spiryagin, M., Polach, O., Cole, C., “Creep force modelling for rail traction vehicles based on the Fastsim algorithm”, Vehicle System Dynamics 51, 1765-1783 (2013)
Thompson, D., “Chapter 5: Wheel/rail interaction and excitation by roughness”, Railway Noise and
Vibration, 127-273 (2009)
Vadillo, E. G., Tárrago, J. A., Garate, G., Duque, C. A., “Effect of sleeper distance on rail corrugation”, Wear 217, 140-146 (1998)
Egana, J. I., Vinolas, J., Seco, M., “Investigation of the influence of rail pad stiffness on rail corrugation on a transit system”, Wear 261, 216-224 (2006)
Oyarzabal, O., Gómez, J., Santamaría, J., Vadillo, E. G., “Dynamic optimization of track components to
minimize rail corrugation”, Journal of Sound and Vibration 319, 904-917 (2009)
Correa, N., Vadillo, E. G., Santamaria, J., Gómez, J., “On the study of train–track dynamic interactions
caused by rail welds on discrete supported rails”, Wear 314, 291-298 (2014)
Gómez, I., Vadillo, E. G., “A linear model to explain short pitch corrugation on rails”, Wear 255, 1127-1142 (2003)
Batten, R. D., Bellette, P. A., Meehan, P. A., Horwood, R. J., Daniel, W. J. T., “Field and theoretical
investigation of the mechanism of corrugation wavelength fixation under speed variation”, Wear 271, 278- 286 (2011)
Torstensson, P. T., Pieringer, A., Nielsen, J. C. O., “Simulation of rail roughness growth on small radius curves using a non-Hertzian and non-steady wheel–rail contact model”, Wear 314, 241-253 (2014)
Correa, N., Vadillo, E. G., Santamaria, J., Herreros, J., “A versatile method in the space domain to study short-wave rail undulatory wear caused by rail surface defects”, Wear 352-353, 196-208 (2016)
Zhang, S., Cheng, G., Sheng, X., Thompson, D. J., “Dynamic wheel-rail interaction at high speed based on time-domain moving Green's functions”, Journal of Sound and Vibration 488, 115632 (2020)
Archard, J. F., “Contact and Rubbing of Flat Surfaces”, Journal of Applied Physics 24, 981-988 (1953)
DIN 50157-1:2020-11, “Metallic materials - Hardness testing with portable measuring devices operating with mechanical penetration depth - Part 1: Test method”, German Insitute for Standarisation, 2020
Robles, R., Correa, N., Vadillo, E. G., Blanco-Lorenzo, J., “Predicting rail corrugation in a real line by means of a fast non-linear vertical and lateral model”, Wear 524-525, 204896 (2023)
Correa, N., Vadillo, E. G., Santamaria, J., Gomez, J., “A rational fraction polynomials model to study vertical dynamic wheel–rail interaction”, Journal of Sound and Vibration 311, 1844-1858 (2012)
Formenti, D., Richardson, M., “Parameter estimation from frequency response measurements using rational fraction polynomials (twenty years of progress)”, Proc. International Modal Analysis Conference XX, 373- 382, California (2002)
Kalker, J. J., “A Fast Algorithm for the Simplified Theory of Rolling Contact”, Vehicle System Dynamics 11, 1-13 (1982)
Kalker, J. J., “Survey of Wheel-Rail Rolling Contact Theory”, Vehicle System Dynamics 8, 317-358 (1979)
Meehan, P. A., Batten, R. D., Bellette, P. A., “The effect of non-uniform train speed distribution on rail corrugation growth in curves/corners”, Wear 366-367, 27-37 (2016)