Influencia del ángulo de contacto en la cinemática y la distribución de carga de rodamientos a bolas

Contenido principal del artículo

Pello Alberdi Quevedo
https://orcid.org/0000-0001-9533-5492
Ibai Ulacia Garmendia
https://orcid.org/0000-0002-7648-801X
Aitor Arana Ostolaza
https://orcid.org/0000-0001-6160-9977
Jon Larrañaga Amilibia
Aitor Oyanguren Garcia
https://orcid.org/0000-0001-7343-7914

Resumen

Los rodamientos a bolas son esenciales en componentes de máquinas rotativas debido a su capacidad para operar bajo cargas axiales y radiales combinadas a altas velocidades, y la lubricación es fundamental para mejorar tanto el rendimiento como la fiabilidad. Un parámetro clave en el diseño de estos rodamientos es el ángulo de contacto, que influye directamente en la capacidad del rodamiento para soportar cargas tanto radiales como axiales. Aunque generalmente se selecciona en función de la distribución de carga, el ángulo de contacto también afecta la cinemática de la bola, lo que repercute en el desgaste, las pérdidas de energía y la temperatura del componente. Este trabajo propone un modelo cuasi-estático basado en el principio de la mínima pérdida de energía para analizar cómo el ángulo de contacto impacta la distribución de carga, la cinemática de la bola y las pérdidas de potencia por deslizamiento. El modelo incorpora lubricación elastohidrodinámica (EHL) para tener en cuenta los efectos locales del movimiento de rotación y resuelve la cinemática del contacto considerando las interacciones de fricción. Los resultados se comparan con hipótesis comúnmente utilizadas en la literatura, destacando que, aunque diferentes hipótesis cinemáticas ofrecen predicciones similares en la distribución de carga, presentan diferencias significativas en la cinemática y las pérdidas de potencia. Así, se concluye que el ángulo de contacto debe ser seleccionado no solo por su capacidad de carga, sino también teniendo en cuenta su influencia sobre el deslizamiento, para optimizar el diseño de los rodamientos.

Detalles del artículo

Cómo citar
Alberdi Quevedo, P., Ulacia Garmendia, I., Arana Ostolaza, A., Larrañaga Amilibia, J., & Oyanguren Garcia, A. (2025). Influencia del ángulo de contacto en la cinemática y la distribución de carga de rodamientos a bolas. Anales De Ingeniería Mecánica, 1(24). https://doi.org/10.63450/aim.1.270.2025
Sección
Artículos

Citas

T. Harris, M. Kotzalas, Essential Concepts of Bearing Technology. Rolling Bearing Analysis, CRC Press, 2006.

T. Harris, M. Kotzalas, Advanced Concepts of Bearing Technology. Rolling Bearing Analysis, CRC Press, 2006.

B. Hamrock, D. Dowson, Ball Bearing Lubrication: The Elastohydrodynamics of Elliptical Contacts, Wiley, 1981.

S. Bair, High pressure rheology for quantitative elastohydrodynamics, Elsevier, 2019.

P. Gupta, Current status of and future innovations in rolling bearing modeling, Tribology Transactions 54 (2011) 394–403.

P. Gupta, Advanced dynamics of rolling elements, Springer, 2012.

A. Jones, Ball motion and sliding friction in ball bearings, Journal of Basic Engineering 81 (1959) 1–12.

A. Jones, A general theory for elastically constrained ball and radial roller bearings under arbitrary load and speed conditions, Journal of Basic Engineering 91 (1960).

J. Dominy, The nature of slip in high-speed axially loaded ball bearings, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 200 (1986) 359–365.

J. Antoine, G. Abba, A. Molinari, A new proposal for explicit angle calculation in angular contact ball bearing, Journal of Mechanical Design 128 (2006) 468–478.

T. Xu, G. Xu, Q. Zhang, C. Hua, H. Tan, S. Zhang, A. Luo, A preload analytical method for ball bearings utilising bearing skidding criterion, Tribology International 67 (2013) 44–50.

Z. Chunjiang, Y. Xiaokai, H. Qingxue, G. Shidong, G. Xin, Analysis on the load characteristics and coefficient of friction of angular contact ball bearing at high speed, Tribology International 87 (2015)

J. Zhang, B. Fang, J. Hong, Y. Zhu, Effect of preload on ball-raceway contact state and fatigue life of angular contact ball bearing, Tribology International 114 (2017) 365–372.

W. Wang, L. Hu, S. Zhang, L. Kong, Modeling high-speed angular contact ball bearing under the combined radial, axial and moment loads, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 228 (2014).

S. Ma, K. Yan, M. Li, Y. Zhu, J. Hong, Research on the bearing sliding loss based on time-varying contact angle between ball and raceway, Lubricants 10 (2022) 185.

C. Ding, F. Zhou, J. Zhu, L. Zhang, Raceway control assumption and the determination of rolling element attitude angle, Chinese Journal of Mechanical Engineering 37 (2001) 58–61.

W. Wang, L. Hu, S. Zhang, Z. Zhao, S. Ai, Modeling angular contact ball bearing without raceway control hypothesis, Mechanism and Machine Theory 82 (2014) 154–172.

S. Gao, L. Wang, Y. Zhang, Modeling and dynamic characteristic analysis of high speed angular contact ball bearing with variable clearance, Tribology International 182 (2023) 108330.

J. Zhang, B. Fang, Y. Zhu, J. Hong, A comparative study and stiffness analysis of angular contact ball bearings under different preload mechanisms, Mechanism and Machine Theory 115 (2017) 1–17.

J. Zhang, B. Fang, K. Yan, J. Hong, A novel model for high-speed angular contact ball bearing by considering variable contact angles, Journal of Mechanical Science and Technology 34 (2020) 809–816.

J. Liu, C. Tang, H. Wu, Z. Xu, L. Wang, An analytical calculation method of the load distribution and stiffness of an angular contact ball bearing, Mechanism and Machine Theory 142 (2019) 103597.

C. Foord, High-speed ball bearing analysis, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 220 (2006) 537–544.

D. Noel, M. Ritou, B. Furet, S. Le Loch, Complete analytical expression of the stiffness matrix of angular contact ball bearings, Journal of Tribology 135 (2013) 041101.

V. Tong, S. Hong, Improved formulation for running torque in angular contact ball bearings, International Journal of Precision Engineering and Manufacturing 19 (2018) 47–56.

V. Tong, S. Hong, Study on the running torque of angular contact ball bearings subjected to angular misalignment, Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 232 (2018) 890–909.

G. Rivera, V. Tong., S. Hong, A study on ball-race contact in angular contact ball bearing during rotation, Journal of the Korean Society for Precision Engineering (2021).

Y. Liu,W.Wang, T. Qing, Y. Zhang, H. Liang, S. Zhang, The effect of lubricant temperature on dynamic behavior in angular contact ball bearings, Mechanism and Machine Theory 149 (2020) 103832.

C. Wen, X. Meng, J. Gu, L. Xiao, S. Jiang, H. Bi, Starved lubrication analysis of angular contact ball bearing based on a multi-degreeof- freedom tribo-dynamic model, Friction 11 (2023) 1395–1418.

J. Hailing, Second paper: Analysis of spin/roll conditions and the frictional-energy dissipation in angular-contact thrust ball bearings, Proceedings of the Institution of Mechanical Engineers 181 (1966) 349–362.

A. Popescu, M. Nazare, V. Carlescu, D. Olaru, An energetic method to determine existence of the raceway control in an angular contact ball bearing operating at low axial load, International conference COMEC 1 (2017) 34–39.

A. Popescu, L. Houpert, D. Olaru, Four approaches for calculating power losses in an angular contact ball bearing, Mechanism and Machine Theory 144 (2020) 103669.

P. Riera, L. M. Macareno, J. Aguirrebeitia, I. Heras, Ball bearing friction assessment through power minimization, Mechanism and Machine Theory 200 (2024) 105714.

J. J. Kalker, A fast algorithm for the simplified theory of rolling contact, Vehicle system dynamics 11 (1) (1982) 1–13.

D. Cubillas, M. Olave, I. Llavori, I. Ulacia, J. Larra˜naga, A. Zurutuza, A. Lopez, An analytical formulation for rotational fretting based on the minimum rolling energy, Wear 508-509 (2022) 204484.

P. Gupta, J.I.Taketa, C. Price, Thermal interactions in rolling bearings, Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 234 (2020) 1233–1253.

P. Gupta, Minimum energy hypothesis in quasi-static equilibrium solutions for angular contact ball bearings, Tribology Transactions 63(2020) 1051–1066.

P. Alberdi, A. Arana, A. Oyanguren, J. Larra˜naga, I. Ulacia, A general kinematic model for lubricated ball bearings based on the minimum energy hypothesis, Tribology International 196 (2024) 109698.

Y. Wang, W. Wang, Z. Zhao, Effect of race conformities in angular contact ball bearing, Tribology International 104 (2016) 109–120.

P. Gloeckner, The influence of the raceway curvature ratio on power loss and temperature of a high-speed jet engine ball bearing, Tribology transactions 56 (1) (2013) 27–32.

E. V. Zaretsky, W. J. Anderson, R. J. Parker, The effect of contact angle on rolling-contact fatigue and bearing load capacity, ASLE TRANSACTIONS 5 (1) (1962) 210–219.

F. Wang, M. Jing, H. Fan, Y. Wei, Y. Zhao, H. Liu, Investigation on contact angle of ball bearings, Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-Body Dynamics 231 (1) (2017) 230–251.

M. Iribecampos, I. Ulacia, A. Arana, J. Larra˜naga, The combined effect of contact interface size and spin on lubricated traction in rolling-sliding point contacts, Tribology International 188 (2023) 108822.

S. Bair, C. McCabe, P. T. Cummings, Calculation of viscous ehl traction for squalane using molecular simulation and rheometry, Tribology Letters 13 (2002) 251–254.

J. Nocedal, S. J. Wright, Numerical optimization, Springer, 1999.

SKF, Rolling bearings, Catalogue (2018).

S. Bair, Reference liquids for quantitative elastohydrodynamics: selection and rheological characterization, Tribology Letters 22 (2006) 197–206.

M. Bj¨orling, Friction in elastohydrodynamic lubrication, Ph.D. thesis, Lulea Tekniska Universitet (2014).

H. Liu, B. Zhang, N. Bader, C. Venner, G. Poll, Scale and contact geometry effects on friction in thermal EHL: twin-disc versus ball-on disc, Tribology international 154 (2021) 106694.

S. Bair, O. Andersson, F. Qureshi, M. Schirru, New ehl modeling data for the reference liquids squalane and squalane plus polyisoprene, Tribology Transactions 61 (2018) 247–255.

V. Jadhao, M. Robbins, Rheological properties of liquids under conditions of elastohydrodynamic lubrication, Tribology Letters 67 (2019).