Modelización del contacto y desgaste de rótulas radiales empleadas en automoción

Contenido principal del artículo

Jon Elgezabal Lazkano
https://orcid.org/0000-0002-1031-7314
Mikel Iribecampos Juaristi
https://orcid.org/0009-0007-5699-7021
Aitor Oyanguren Garcia
https://orcid.org/0000-0001-7343-7914
Ibai Ulacia Garmendia
https://orcid.org/0000-0002-7648-801X

Resumen

Las rotulas son elementos mecánicos que permiten conectar componentes de un mecanismo restringiendo los grados de libertad relativos de translación, mientras permiten los giros relativos entre componentes. Las rótulas de automoción están formadas principalmente por tres componentes diferentes, una carcasa de acero, un casquillo polimérico y una bola esférica metálica, que está unida a una varilla roscada. La rigidez de las rótulas influye en la rigidez de todo el mecanismo; por lo tanto, es deseable maximizar la rigidez de las rótulas para evitar la inclusión de puntos con baja rigidez que podrían cambiar el comportamiento del mecanismo. El valor de rigidez depende de las propiedades de los materiales, los espesores y las interferencias de montaje. La interferencia crea una precarga, por lo que aumenta la rigidez, pero a costa de aumentar también los pares de fricción, lo cual no es deseable, ya que las rótulas deben transferir las fuerzas, pero no los pares.  


A lo largo de su vida útil, las rótulas están sujetas a diversas condiciones mecánicas y térmicas, lo que puede dar lugar a fallos por múltiples razones. Una causa potencial de estos fallos es el desgaste de los materiales poliméricos empleados en su fabricación. A pesar del uso de polímeros de baja fricción y lubricantes, el desgaste en las rótulas es inevitable. Este desgaste conlleva una disminución de la rigidez de la unión, particularmente en la dirección axial, lo que impacta negativamente en el comportamiento dinámico y el confort del vehículo. Actualmente, existen pocos estudios que aborden la predicción de la pérdida de rigidez tras un determinado ciclo de desgaste.


En el presente trabajo, se propone un modelo de elementos finitos que prediga el desgaste de una rótula empleada en automoción durante su ciclo de vida. El modelo incluye un algoritmo iterativo de desgaste no uniforme, el cual se implementa en el contacto con una subrutina, que actualiza la superficie de contacto a lo largo del tiempo. Después de simular la prueba de desgaste, se realizan los cálculos de rigidez y par. Los resultados obtenidos se validan experimentalmente con ensayos realizados en piezas reales, las cuales han sido sometidas inicialmente a pruebas de desgaste y posteriormente a ensayos de rigidez y par.

Detalles del artículo

Cómo citar
Elgezabal Lazkano, J., Iribecampos Juaristi, M., Oyanguren Garcia, A., & Ulacia Garmendia, I. (2025). Modelización del contacto y desgaste de rótulas radiales empleadas en automoción. Anales De Ingeniería Mecánica, 1(24). https://doi.org/10.63450/aim.1.168.2025
Sección
Artículos

Citas

Heißing B., Ersoy M., Chassis Handbook: Fundamentals, Driving Dynamics, Components, Mechatronics, Perspectives (2011).

Eng D. et al., "Comparison of the friction coefficient for selected car suspensions elements", Scientific Proceedings XXII International Scientific-Technical Conference, Varna, Bulgaria, 14-16 (2014).

Komori K., Nagataki T., "Friction Behavior of Diamond-Like Carbon Coated Ball Joint: Approach to Improving Vehicle Handling and Ride-Comfort", SAE International Journal of Passenger Cars - Mechanical Systems 8(2), 638-646 (2015).

Vijayanand A., Natarajan S., Ramkumar K. R., Sundararajan S., "Optimization and dry sliding wear behaviour of spray coated MoS2 on automotive ball joints through response surface methodology", Materials Research Express 6 (2018).

Chung S., Lee Y., Park S., "Practical Evaluation of Ball Stud Plating Effects on the Increase of Free Gap of Ball Joints in the Vehicle", International Journal of Automotive Technology 21, 1107-1111 (2020).

Mergler Y., Schaake R., Huis in ’t Veld A., "Material transfer of POM in sliding contact", Wear 256, 294-301 (2004).

Xiong X., Hua L., Wan X., Yang C., Xie C., He D., "Experiment and simulation of friction coefficient of polyoxymethylene", Industrial Lubrication and Tribology 70(2), 273-281 (2018).

Roslizan M. F., Sulaiman S., "Analysis of The Ball Joints Rolling Process Deformation", Progress in Engineering Application and Technology 1(1), 390-398 (2020).

Jang B.-H., Lee K.-H., "Analysis and design of a ball joint, considering manufacturing process", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 228(1), 146-151 (2014).

AK-LH 14, Suspension Joints/Requirements and Testing (2004).

Zhang J., Fang B., Zhu Y., Hong J., "A comparative study and stiffness analysis of angular contact ball bearings under different preload mechanisms", Mechanism and Machine Theory 115, 1-17 (2017).

Farfan-Cabrera L. I., "Tribology of electric vehicles: A review of critical components, current state and future improvement trends", Tribology International 138, 473-486 (2019).

Weiss C., Morlock M., Hoffmann N., "Friction induced dynamics of ball joints: Instability and post bifurcation behavior", European Journal of Mechanics - A/Solids 45 (2013).

Koumura S., Shionoya T., "Ride Comfort Analysis Considering Suspension Friction with Series Rigidity", SAE International Journal of Passenger Cars - Mechanical Systems 9, 409-418 (2016).

Changwan H., Kim H., Yoo Y.-J., Park S., "Relationships between Free Gaps and Abnormal Noises of Vehicle Stabilizer Links", Transaction of the Korean Society of Automotive Engineers 25, 28-34 (2017).

Martins H. R. R., Zucchini M., "Ball Joint Pull Out Simulation using Finite Element Analysis", SAE Brasil Congress and Exhibit (2006).

Sin B.-S., Lee K.-H., "Process Design of a Ball Joint, Considering Caulking and Pull-Out Strength", The Scientific World Journal 2014, 971679 (2014).

Rutci A., Eren F., "Investigation of Suspension Ball Joint Pull Out Force Based on FEA Method and Experimental Study", Academic Perspective Procedia 1, 1002-1009 (2018).

Dunn A. L., Tanner C. B., Stansifer R. L., Doyle S. A., Guenther D. A., "Vehicle Handling and Control Following Front Ball Joint Failure", SAE World Congress & Exhibition (2008).

Durisek N. J., Granat K. J., Holmes E. W., "Analysis of Front Suspension Ball Joint Separations in Motor Vehicle Crashes", SAE World Congress & Exhibition (2009).

Han G., Shangguan W.-B., Zheng G.-F., Yin Z. H., "Wear experiment of ball joints under multi-axis loads using special developed fixtures", International Journal of Vehicle Performance 6(1), 85-97 (2020).

Ledesma R., Jenaway L., Wang Y., Shih S., "Development of Accelerated Durability Tests for Commercial Vehicle Suspension Components", SAE Technical Papers (2005).

Ejtehadi M.-H., Klaus H., Sommer S., Haensel H., Scholten J., "Running-in phase of spherical chassis joints—identification of the main influence parameter and implementation in a wear simulation tool", International Journal of Advanced Manufacturing Technology 55, 983-995 (2011).

Raes S., Devreese T., Pauw J., de Baets P., "Design of a tribological ball joint tester", International Journal Sustainable Construction & Design 6 (2015).

Ossa A., Palacio C., Paniagua M., "Failure analysis of a car suspension system ball joint", Engineering Failure Analysis 18, 1388-1394 (2011).

Rutci A., Ovali E., "Plastic Ball Bearing Design Improvement Using Finite Element Method", presentado en 5th International Symposium on Innovative Technologies in Engineering and Science (ISITES’17), Baku, Azerbaijan (2017).

Su Y., Chen W., Tong Y., Xie Y., "Wear prediction of clearance joint by integrating multi-body kinematics with finite-element method", Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 224(8), 815-823 (2010).

Mukras S. M. S., "Computer Simulation/Prediction of Wear in Mechanical Components", Advances in Tribology 2020, 8867351 (2020).

Shinde J., Kadam S., "Design of Suspension Ball Joint Using FEA and Experimental Method", International Research Journal of Engineering and Technology (IRJET) 3(7), 1853-1858 (2016).

Watrin J. C., Makich H., Haddag B., Nouari M., Grandjean X., "Analytical modelling of the ball pin and plastic socket contact in a ball joint", en Congrès français de mécanique, CFM 2017, Lille, France (2017).

Soldatenkov I., "To the calculation of ball joint wear under random loading", Journal of Friction and Wear 13, 26-31 (1992).

Dykha A., Padgurskas J., Babak O., "Prediction of the life time of cylindrical tribosystems of a vehicle", IOP Conference Series: Materials Science and Engineering 1021, 012036 (2021).

Ejtehadi M. H., "Experimental analysis and numerical simulation of the running-in phase in spherical suspension joints", (2013).

Han C., Kim H., Yoo Y. J., Park S., “Relationships between Free Gaps and Abnormal Noises of Vehicle Stabilizer Links”, Transactions of KSAE, Vol. 25, No. 1, pp.28-34 (2017).

Bin Omar S., “Tribology Study of Suspension and linkages in automotive”, 2nd Mytribos Symposium, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Skudai, Johor on 8th October 2017, 38-40.

Muscă I., Românu I. C., Gagea A., “Preliminary study of friction in automotive ball joints”, IOP Conf. Series: Materials Science and Engineering 724 (2020) 012020.

"ABAQUS/Standard User’s Manual".

Archard J. F., "Single Contacts and Multiple Encounters", Journal of Applied Physics 32(8), 1420-1425 (1961).

"Acetal Typical Properties Generic Acetal (POM) Copolymer | UL Prospector".

Archard J. F., "Contact and Rubbing of Flat Surfaces", Journal of Applied Physics 24(8), 981-988 (1953).

Stanković M., Marinković A., Grbović A., Mišković Ž., Rosić B., Mitrović R., "Determination of Archard’s wear coefficient and wear simulation of sliding bearings", Industrial Lubrication and Tribology 71(1), 119-125 (2019).

Bhushan B., Introduction to Tribology, 2.a ed., John Wiley & Sons (2002).

Totten G. E. (Ed.), Friction, Lubrication, and Wear Technology, ASM International (2017).

Tabrizi A. T., Aghajani H., Saghafian H., Laleh F. F., "Correction of Archard equation for wear behavior of modified pure titanium", Tribology International 155, 106772 (2021).

Liu B., Bruni S., Lewis R., "Numerical calculation of wear in rolling contact based on the Archard equation: Effect of contact parameters and consideration of uncertainties", Wear 490-491, 204188 (2022)

Rezaei A., Van Paepegem W., De Baets P., Ost W., Degrieck J., "Adaptive finite element simulation of wear evolution in radial sliding bearings", Wear 296(1), 660-671 (2012)