Análisis comparativo de métodos de evaluación del desgaste en texturas con aplicación al mecanizado de titanio

Contenido principal del artículo

Irene Del Sol Illana
https://orcid.org/0000-0002-1882-7327
Javier García Fernández
https://orcid.org/0009-0008-8994-2059
Moisés Batista Ponce
https://orcid.org/0000-0001-8385-966X
Juan Manuel Vázquez Martínez
https://orcid.org/0000-0002-1227-7344
Patricia Iglesias Victoria
https://orcid.org/0000-0002-5276-4753
Jorge Salguero Gómez
https://orcid.org/0000-0002-9944-9144

Resumen

El texturizado de herramientas de corte es una mejora del diseño de herramientas que facilita el mecanizado de materiales difíciles como las aleaciones de titanio. Se trata de una solución que incrementa la sostenibilidad del mecanizado al facilitar la reducción de lubricantes y disminuir el desgaste de herramientas. Aunque actualmente existen varias investigaciones al respecto, la mayoría se centran en aplicaciones directas sin observar en detalle la evolución del desgaste producido utilizando ensayos tribológicos simplificados.


Este trabajo presenta un estudio comparativo de la metodología de caracterización del material eliminado con el objetivo de analizar el efecto de la orientación de las texturas en el comportamiento tribológico de herramientas de corte con posible aplicación al mecanizado de titanio. En esta metodología, se realizan ensayos plano sobre plano con el par de contacto Ti- WC-Co, analizando el efecto de la orientación de la textura a 0º, 45º y 90º. Para la evaluación la pérdida de material de pin este estudio propone tres métodos diferentes. En dos de ellos se mide la pérdida de material al final del ensayo analizando en uno la reducción de la masa y en el otro la longitud del pin empleado. El tercer método es un método medición indirecta e in situ que permite estudiar la posición en Z del cabezal que sujeta el pin, utilizando los sensores propios del tribómetro empleado y permitiendo un estudio de la evolución en el tiempo.


Los resultados muestran variaciones significativas entre las metodologías empleadas que se ven influenciadas por la orientación de las texturas. Es especialmente significativo el efecto debido a variaciones en el proceso relacionadas con la sujeción del pin y el desgaste del disco en aquellas mediciones realizadas por los sensores del equipo. Sin embargo, este método permite evaluar el efecto de la distancia recorrida y la linealidad de respuesta al desgaste.

Detalles del artículo

Cómo citar
Del Sol Illana, I., García Fernández, J., Batista Ponce, M., Vázquez Martínez, J. M., Iglesias Victoria, P., & Salguero Gómez, J. (2025). Análisis comparativo de métodos de evaluación del desgaste en texturas con aplicación al mecanizado de titanio. Anales De Ingeniería Mecánica, 1(24). https://doi.org/10.63450/aim.1.74.2025
Sección
Artículos

Citas

S.R. Oke, G.S. Ogunwande, M. Onifade, E. Aikulola, E.D. Adewale, O.E. Olawale, B.E. Ayodele, F. Mwema, J. Obiko, M.O. Bodunrin, "An overview of conventional and non-conventional techniques for machining of titanium alloys," Manuf. Rev., 7 (2022) 34. https://doi.org/10.1051/MFREVIEW/2020029

J.P. Davim, Materials Forming, Machining and Tribology, first ed., Springer, Switzerland, 2022.

A. Pramanik, Machining and Tribology: Processes, Surfaces, Coolants, and Modeling, first ed., Elsevier, Amsterdam, 2022.

ASM Handbook Vol. 16: Machining, first ed., ASM International, USA, 1989.

M. Nouari, G. List, F. Girot, D. Coupard, "Experimental analysis and optimisation of tool wear in dry machining of aluminium alloys," Wear, 255 (7–12) (2003) 1359-1368. https://doi.org/10.1016/S0043-1648(03)00105-4

J. Salguero, M. Batista, J.A. Sánchez, M. Marcos, "An XPS study of the stratified built-up layers developed onto the tool surface in the dry drilling of Ti alloys," Adv. Mat. Res., 223 (2011) 564-572. https://doi.org/10.4028/www.scientific.net/AMR.223.564

M. Hourmand, A.A.D. Sarhan, M. Sayuti, M. Hamdi, "A comprehensive review on machining of Titanium alloys," Arab. J. Sci. & Eng., 46 (2021) 7087–7123. https://doi.org/10.1007/S13369-021-05420-1

W. Di, C. Shuqing, "Study on the influence of chip break groove front angle on the performance of cutting Ti6Al4V," 8th Int. Conf. Int. Inf. & Biomed. Sci., (2023) 357-360. https://doi.org/10.1109/ICIIBMS60103.2023.10347747

Ş. Altinsoy, N.B. Üllen, M. Ersoy, D. Can, "Machining performance of uncoated and carbide coated cutting inserts in Ti6Al4V turning: An experimental and numerical approach," J. Mat. Eng. & Perform., (2024) 1-19. https://doi.org/10.1007/s11665-024-09788-7

M. Soori, B. Arezoo, "The effects of coolant on the cutting temperature, surface roughness and tool wear in turning operations of Ti6Al4V alloy," Mech. Based Des. Struc. & Mach., 52(6) (2023) 3277–3299. https://doi.org/10.1080/15397734.2023.2200832

M. Ganesh, N. Arunkumar, "A sustainable approach in deep hole drilling of Ti6Al4V: Effect of cryogenic cooling on hole parameters and its evaluation," J. Manuf. Proc., 121 (2024) 343-360. https://doi.org/10.1016/j.jmapro.2024.05.048

Y. Chen, J. Wang, M. Chen, "Enhancing the machining performance by cutting tool surface modifications: A focused review," Mach. Sci. & Tech., 23 (2019) 477–509. https://doi.org/10.1080/10910344.2019.1575412

A. Arslan, H.H. Masjuki, M.A. Kalam, M. Varman, R.A. Mufti, M.H. Mosarof, L.S. Khuong, M.M. Quazi, "Surface texture manufacturing techniques and tribological effect of surface texturing on cutting tool performance: A review," Crit. Rev. Sol. Sta. & Mat. Sci., 41 (2022) 447–481. https://doi.org/10.1080/10408436.2016.1186597

Z. Kang, M.B.G. Jun, Y. Fu, "Performance of cemented carbide cutting tools with volcano-like texture on rake face," ASME 13th Int. Manuf. Sci. & Eng. Conf., (2018) V004T003A009. https://doi.org/10.1115/MSEC2018-6311

P. Sivaiah, U. Bodicherla, "Effect of surface texture tools and minimum quantity lubrication (MQL) on tool wear and surface roughness in CNC turning of AISI 52100 steel," J. Inst. Eng. India Ser. C, 101(1) (2020) 85–95. https://doi.org/10.1007/s40032-019-00512-2

T. Ibatan, M.S. Uddin, M.A.K. Chowdhury, "Recent development on surface texturing in enhancing tribological performance of bearing sliders," Surf. & Coat. Tech., 272 (2015) 102–120. https://doi.org/10.1016/j.surfcoat.2015.04.017

A.O. Ijaola, E.A. Bamidele, C.J. Akisin, I.T. Bello, A.T. Oyatobo, A. Abdulkareem, P.K. Farayibi, E. Asmatulu, "Wettability transition for laser textured surfaces: A comprehensive review," Surf. and Interf., 21 (2020) 100802. https://doi.org/10.1016/j.surfin.2020.100802

J.M. Vázquez, J. Salguero, I. Del Sol, "Texturing design of WC-Co through laser parameter selection to improve lubricant retention ability of cutting tools," Int. J. Refrac. Met. & Hard Mater., 107 (2022) 105880. https://doi.org/10.1016/j.ijrmhm.2022.105880

Y. Lian, H. Chen, C. Mu, J. Deng, S. Lei, "Experimental investigation and mechanism analysis of tungsten disulfide soft-coated micro-nano textured self-lubricating dry cutting tools," Int. J. Precis. Eng. Manuf. Technol., 5 (2018) 219–230. https://doi.org/10.1007/s40684-018-0022-9

P. Fernández-Lucio, G. Urbikain, S. Plaza, U. Ukar, O. Pereira, "Enhancement of ceramic tool behavior with textured grooves during machining of Inconel 718," Int. J. Adv. Manuf. Technol., 134 (2024) 2955–2968. https://doi.org/10.1007/s00170-024-14222-2

N.T. Alagan, P. Zeman, P. Hoier, T. Beno, U. Klement, "Investigation of microtextured cutting tools used for face turning of alloy 718 with high-pressure cooling," J. Manuf. Process., 37 (2019) 606–616. https://doi.org/10.1016/j.jmapro.2018.12.023

A.R. Machado, L.R.R. da Silva, F.C.R. de Souza, R. Davis, L.C. Pereira, W.F. Sales, W. de Rossi, E.O. Ezugwu, "State of the art of tool texturing in machining," J. Mat. Proc. Tech., 293 (2021) 117096. https://doi.org/10.1016/j.jmatprotec.2021.117096

D. Arulkirubakaran, V. Senthilkumar, S. Dinesh, C. Velmurugan, N. Manikandan, R. Raju, "Effect of textured tools on machining of Ti-6Al-4V alloy under lubricant condition," Mater. Today Proc., 5(6-2) (2018) 14230–14236. https://doi.org/10.1016/j.matpr.2018.03.003

X. Liu, Y. Liu, L. Li, Y. Tian, "Performances of micro-textured WC-10Ni3Al cemented carbides cutting tool in turning of Ti6Al4V," Int. J. Refract. Metals & Hard Mater., 84 (2019) 104987. https://doi.org/10.1016/j.ijrmhm.2019.104987

K. Patel, G. Liu, S.R. Shah, T. Özel, "Effect of micro-textured tool parameters on forces, stresses, wear rate, and variable friction in Titanium alloy machining," J. Manuf. Sci. & Eng. – Trans. ASME, 142 (2020) MANU-19-1071. https://doi.org/10.1115/1.4045554

N.A. Sristi, P.B. Zaman, "A review of textured cutting tools’ impact on machining performance from a tribological perspective," Int. J. Adv. Manuf. Tech., 133 (2024) 4023–4057. https://doi.org/10.1007/s00170-024-13865-5

J. Salguero, et al., "Application of Pin-On-Disc techniques for the study of tribological interferences in the dry machining of A92024-T3 (Al-Cu) alloys," Materials, 11(7) (2018). https://doi.org/10.3390/MA11071236

P.C. Verma, R. Ciudin, A. Bonfanti, A. Pranesh, G. Straffelini, S. Gialanella, "Role of the friction layer in the high-temperature pin-on-disc study of a brake material," Wear, 346–347 (2016) 56–65. https://doi.org/10.1016/j.wear.2015.11.004

P. Zhang, L. Zhang, D. Wei, P. Wu, J. Cao, C. Shijia, X. Qu, "Substance evolution and wear mechanism on friction contact area of brake disc for high-speed railway trains at high temperature," Engineering Failure Analysis 111 (2020) 104472. https://doi.org/10.1016/j.engfailanal.2020.104472

R. Khuengpukheiw, A. Wisitsoraat, C. Saikaew, "Wear behaviors of HVOF-sprayed NiSiCrFeB, WC-Co/NiSiCrFeB and WC-Co coatings evaluated using a pin-on-disc tester with C45 steel pins," Wear 484-485 (2021) 203699. https://doi.org/10.1016/j.wear.2021.203699

J. Salguero, I. Del Sol, J.M. Vazquez-Martinez, M.J. Schertzer, P. Iglesias, "Effect of laser parameters on the tribological behavior of Ti6Al4V titanium microtextures under lubricated conditions," Wear, 426–427 (2019) 1272–1279. https://doi.org/10.1016/j.wear.2018.12.029

P.K. Kumar, A.S. Kumar, "Investigation of frictional characteristics of laser textured aluminium 6061 and aluminium 7071 alloys under dry sliding conformal contact in pin on disc tribometer," Materials Today: Proceedings, 45 (2021) 670–676. https://doi.org/10.1016/j.matpr.2020.02.735

I. Velkavrha, M. Lüchinger, K. Kern, S. Klien, F. Ausserer, J. Voyer, A. Diem, M. Schreiner, W. Tillmann, "Using a standard pin-on-disc tribometer to analyse friction in a metal forming process," Tribology International, 114 (2017) 418–428. https://doi.org/10.1016/j.triboint.2017.04.052

ASTM International, "Standard Test Method for Linearly Reciprocating Ball-on-Flat Sliding Wear," ASTM G133-22, West Conshohocken, PA, 2022.

J. Salguero, et al., "A comparative study of disk wear volume evaluation of AL2024 based on ASTM G99," Proceedings of ASME 2022 International Mechanical Engineering Congress and Exposition, IMECE2022, 9, Amer Soc Mechanical Engineers, 2022.