Modelización de fricción seca en superficies suaves a nivel atómico y dopadas

Contenido principal del artículo

Joaquin Solano Ramírez
https://orcid.org/0000-0003-2136-5159
José Andrés Moreno Nicolás

Resumen

La fricción seca entre superficies suaves a nivel atómico no puede entenderse a escala macroscópica sin conocer que ocurre a escala atómica. Los ensayos con estas superficies son muy caros y se ven afectados por la contaminación o desajustes en las instalaciones de ensayos. Por otro lado, las probetas tienen dimensiones muy reducidas por requerimientos de dichas instalaciones. Si además, se plantea que efecto puede tener la inyección de átomos de otro material en dichas superficies, el coste de la experimentación sin un análisis teórico previo puede ser prohibitivo. En este sentido, los modelos discretos pueden reducir el número de ensayos a realizar y proporcionar un valor de referencia con el que comparar los resultados experimentales.


Estos modelos numéricos presentan comportamientos caóticos para algunas combinaciones de los parámetros que los definen. El método de simulación por redes (MESIR), que transforma el problema mecánico original en un circuito con ecuaciones diferenciales equivalentes, combina métodos numéricos convencionales con herramientas propias de diseño de circuitos. lo que facilita la convergencia.


En este artículo se presenta un modelo numérico para el calculo de las fuerzas de fricción de superficies suaves a nivel atómico con un patrón de inyección de átomos distintos a los de la superficie receptora. El patrón de dopado viene definido por un átomo inyectado cada 116 átomo de superficie receptora. Este modelo proporciona la fuerza de fricción para las variaciones de rigidez de la superficie en función de la naturaleza del material.

Detalles del artículo

Cómo citar
Solano Ramírez, J., & Moreno Nicolás, J. A. (2025). Modelización de fricción seca en superficies suaves a nivel atómico y dopadas. Anales De Ingeniería Mecánica, 1(24). https://doi.org/10.63450/aim.1.59.2025
Sección
Artículos

Citas

Jonsmann J, Sigmund O, Bouwstra S. Compliant thermal microactuators. Sens Actuators A Phys. 1999;76(1–3):463–9.

Mahalik NP, Paul BK. Micro energy and chemical systems (MECS) and multiscale fabrication. Micromanufacturing and nanotechnology. 2006;299–355.

Ouyang X, Tilley D, Keogh P, Yang H, Johnson N, Bowen C, et al. Piezoelectric actuators for screw-in cartridge valves. In: 2008 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. IEEE; 2008. p. 49–55.

Engel U, Eckstein R. Microforming—from basic research to its realization. J Mater Process Technol. 2002;125:35–44.

Razali AR, Qin Y. A review on micro-manufacturing, micro-forming and their key issues. Procedia Eng. 2013;53:665–72.

Abtahi M, Vossoughi G, Meghdari A. Dynamic Modeling of Scratch Drive Actuators. Journal of Microelectromechanical Systems. 2015;24(5):1370–83.

Fu MW, Chan WL. A review on the state-of-the-art microforming technologies. The International Journal of Advanced Manufacturing Technology. 2013;67:2411–37.

Singh A, Suh KY. Biomimetic patterned surfaces for controllable friction in micro-and nanoscale devices. Micro and Nano Systems Letters. 2013;1:1–11.

Liu YF, Li J, Hu XH, Zhang ZM, Cheng L, Lin Y, et al. Modeling and control of piezoelectric inertia–friction actuators: review and future research directions. Mechanical Sciences. 2015;6(2):95–107.

Schneider J, Djamiykov V, Greiner C. Friction reduction through biologically inspired scale-like laser surface textures. Beilstein journal of nanotechnology. 2018;9(1):2561–72.

Prandtl L. Ein Gedankenmodell zur kinetischen Theorie der festen Körper. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik. 1928;8(2):85–106.

Tomlinson GA. CVI. A molecular theory of friction. The London, Edinburgh, and Dublin philosophical magazine and journal of science. 1929;7(46):905–39.

Sircar A, Patra PK. A simple generalization of Prandtl–Tomlinson model to study nanoscale rolling friction. J Appl Phys. 2020;127(13).

Sánchez-Pérez JF, Marín F, Morales JL, Cánovas M, Alhama F. Modeling and simulation of different and representative engineering problems using Network Simulation Method. PLoS One. 2018;13(3):e0193828.

Kontorova T, Frenkel J. On the theory of plastic deformation and twinning. II. Zh Eksp Teor Fiz. 1938;8:1340–8.

Quapp W, Bofill JM. An Analysis of Some Properties and the Use of the Twist Map for the Finite Frenkel–Kontorova Model. Electronics (Switzerland). 2022 Oct 1;11(20).

Alhama F, Campo A. Electric Network Representation of the Unsteady Cooling of a Lumped Body by Nonlinear Heat Transfer Modes. J Heat Transfer [Internet]. 2002 Sep 11;124(5):988–92. Available from: https://doi.org/10.1115/1.1495520

Alhama F, González-Fernández CF. Network simulation method for solving phase-change heat transfer problems with variable thermal properties. Heat and Mass Transfer [Internet]. 2002;38(4):327–35. Available from: https://doi.org/10.1007/s002310100254

Sánchez-Pérez JF, Marín F, Morales JL, Cánovas M, Alhama F. Modeling and simulation of different and representative engineering problems using Network Simulation Method. PLoS One. 2018;13(3):e0193828.

Carlson JM, Langer JS. Properties of earthquakes generated by fault dynamics. Phys Rev Lett [Internet]. 1989 May 29;62(22):2632–5. Available from: https://link.aps.org/doi/10.1103/PhysRevLett.62.2632

Erickson BA, Birnir B, Lavallée D. Periodicity, chaos and localization in a Burridge-Knopoff model of an earthquake with rate-and-state friction. Geophys J Int. 2011 Oct;187(1):178–98.

Barbot S. Slow-slip, slow earthquakes, period-two cycles, full and partial ruptures, and deterministic chaos in a single asperity fault. Tectonophysics. 2019 Oct 5;768:228171.

Stefanou I. Control instabilities and incite slow-slip in generalized Burridge-Knopoff models. arXiv preprint arXiv:200803755. 2020;

Bishop AR. Solitons in Condensed Matter Physics. Phys Scr [Internet]. 1979 Sep;20(3–4):409–23. Available from: https://iopscience.iop.org/article/10.1088/0031-8949/20/3-4/016

Schwarz UD, Hölscher H. Atomic-Scale Friction Studies Using Scanning Force Microscopy. In: Modern Tribology Handbook, Two Volume Set. CRC Press; 2000. p. 671–96.

Fan P, Goel S, Luo X, Upadhyaya HM. Atomic-Scale Friction Studies on Single-Crystal Gallium Arsenide Using Atomic Force Microscope and Molecular Dynamics Simulation. Nanomanufacturing and Metrology [Internet]. 2022;5(1):39–49. Available from: https://doi.org/10.1007/s41871-021-00109-3

Hälg D, Gisler T, Tsaturyan Y, Catalini L, Grob U, Krass MD, et al. Membrane-based scanning force microscopy. Phys Rev Appl. 2021;15(2):L021001.

Meyer E, Heinzelmann H. Scanning force microscopy (SFM). In: Scanning Tunneling Microscopy II: Further Applications and Related Scanning Techniques. Springer; 1992. p. 99–149.

Ducourtieux S, Poyet B. Development of a metrological atomic force microscope with minimized Abbe error and differential interferometer-based real-time position control. Meas Sci Technol. 2011;22(9):094010.

Greenwood JA, Singer IL, Pollock HM. Fundamentals of Friction: Macroscopic and Microscopic Processes. Kluwer Dordrecht; 1992.

Greenwood JA, Williamson JBP. Contact of nominally flat surfaces. Proc R Soc Lond A Math Phys Sci. 1966;295(1442):300–19.

Myshkin NK, Grigoriev AY, Chizhik SA, Choi KY, Petrokovets MI. Surface roughness and texture analysis in microscale. Wear. 2003 Jul 1;254(10):1001–9.

Manabe K ichi. Metal micro-forming. Vol. 10, Metals. MDPI; 2020. p. 813.

Bučinskas V, Subačiūtė-Žemaitienė J, Dzedzickis A, Morkvėnaitė-Vilkončienė I. Robotic micromanipulation: A) actuators and their application. 2021;

Gibbons JF. Ion implantation in semiconductors—Part I: Range distribution theory and experiments. Proceedings of the IEEE. 1968;56(3):295–319.

Stroscio JA, Celotta RJ. Controlling the dynamics of a single atom in lateral atom manipulation. Science (1979). 2004;306(5694):242–7.

Manova D, Gerlach JW, Mändl S. Thin film deposition using energetic ions. Materials. 2010;3(8):4109–41.

Mundra SS, Pardeshi SS, Bhavikatti SS, Nagras A. Development of an integrated physical vapour deposition and chemical vapour deposition system. Mater Today Proc. 2021;46:1229–34.

Kizu R, Misumi I, Hirai A, Kinoshita K, Gonda S. Development of a metrological atomic force microscope with a tip-tilting mechanism for 3D nanometrology. Meas Sci Technol. 2018;29(7):075005.

Misumi I, Sugawara K, Kizu R, Hirai A, Gonda S. Extension of the range of profile surface roughness measurements using metrological atomic force microscope. Precis Eng. 2019;56:321–9.

Sun L, Wang QJ, Zhao N, Zhang M. Discrete convolution and FFT modified with double influence-coefficient superpositions (DCSS–FFT) for contact of nominally flat heterogeneous materials involving elastoplasticity. Comput Mech. 2021;67:989–1007.

Peusner L. Network thermostatics. J Chem Phys. 1985;83(3):1276–91.

Peusner L. The principles of network thermodynamics: theory and biophysical applications. Entropy Limited; 1987.

Alhama F, Campo A. Electric Network Representation of the Unsteady Cooling of a Lumped Body by Nonlinear Heat Transfer Modes. J Heat Transfer [Internet]. 2002 Sep 11;124(5):988–92. Available from: https://doi.org/10.1115/1.1495520

Alhama F, González-Fernández CF. Network simulation method for solving phase-change heat transfer problems with variable thermal properties. Heat and Mass Transfer [Internet]. 2002;38(4):327–35. Available from: https://doi.org/10.1007/s002310100254

Sánchez-Pérez JF, Marín F, Morales JL, Cánovas M, Alhama F. Modeling and simulation of different and representative engineering problems using Network Simulation Method. PLoS One. 2018;13(3):e0193828.

Zueco J, Hernández-González A. Network simulation method applied to models of diffusion-limited gas bubble dynamics in tissue. Acta Astronaut. 2010;67(3–4):344–52.

Solano J, Balibrea-Iniesta F, Moreno Nicolás JA. Applications of the network simulation method to differential equations with singularities and chaotic behaviour. Mathematics. 2021;9(12).

Solano J, Balibrea F, Moreno JA, Marín F. Dry Friction Analysis in Doped Surface by Network Simulation Method. Mathematics. 2023;11(6):1341.

Solano J, Balibrea F, Moreno JA, Marín F. Dry Friction Analysis in Doped Surface by Network Simulation Method. Mathematics. 2023;11(6):1341.

Solano J, Balibrea-Iniesta F, Nicolas JAM, García FM. Analysis of chaotic responseof Frenkel-Kontorova-Tomlinson model. Symmetry (Basel). 2020;12(9).

Solano J, Balibrea-Iniesta F, Moreno Nicolás JA, Marín-García F. Dry Friction Analysis in Doped Surface by Network Simulation Method. Mathematics. 2023;11(6).

Sánchez Pérez JF, Marín-García F, Castro E, García-Ros G, Conesa M, Solano J. Methodology for Solving Engineering Problems of Burgers–Huxley Coupled with Symmetric Boundary Conditions by Means of the Network Simulation Method. Symmetry (Basel). 2023;15(9).

Vladimirescu A. The SPICE book. John Wiley & Sons, Inc.; 1994.

SKOWRONN D, LI D, TYMERSKI R. Simulation of networks with ideal switches. International Journal of Electronics [Internet]. 1994 Nov 1;77(5):715–30. Available from: https://doi.org/10.1080/00207219408926096

Constantinescu F, Gheorghe AG, NIŢESCU M. The energy balance error for circuit transient analysis. Rev Roum Sci Techn–Électrotechn et Énerg. 2010;55(3):243–50.

Solano J, Mulas-Pérez J, Balibrea F, Moreno-Nicolás JA. Truncation Error of the Network Simulation Method: Chaotic Dynamical Systems in Mechanical Engineering. Mathematics [Internet]. 2024 Nov 4;12(21):3441. Available from: https://www.mdpi.com/2227-7390/12/21/3441

Celotta RJ, Balakirsky SB, Fein AP, Hess FM, Rutter GM, Stroscio JA. Invited article: Autonomous assembly of atomically perfect nanostructures using a scanning tunneling microscope. Review of Scientific Instruments. 2014 Dec 1;85(12).