Análisis de las propiedades hemodinámicas e índices de hemólisis en bombas de sangre mediante CFD

Contenido principal del artículo

Alessia Gutiérrez García
Alejandro Lopez
https://orcid.org/0000-0001-5498-1746

Resumen

Las enfermedades cardíacas son la principal causa de muerte a nivel mundial y, por esta razón, muchos pacientes requieren cirugías que salvan vidas, las cuales generalmente implican el uso de bombas de sangre para sustituir la función del corazón, ya sea de forma temporal o permanente. Sin embargo, cuando la sangre es bombeada a través del dispositivo, las altas velocidades y las geometrías complejas suelen provocar daños en la sangre. Dado que los glóbulos rojos son las células más comunes en la sangre, estos suelen ser los más afectados. Este artículo revisa el desarrollo de los modelos de hemólisis y daño a los glóbulos rojos, así como los desafíos actuales para representar con precisión dicho daño. La hemólisis es la destrucción de los glóbulos rojos y representa una preocupación importante para los ingenieros al diseñar y evaluar bombas de sangre, como las utilizadas en la oxigenación por membrana extracorpórea (ECMO) o en los dispositivos de asistencia ventricular (VAD). Para ello, se han creado múltiples modelos que intentan evaluar esta patología; sin embargo, han surgido numerosos problemas y limitaciones durante su desarrollo, lo que ha llevado a que muchos de estos modelos no representen con precisión el daño a los glóbulos rojos. Además, el software de dinámica de fluidos computacional (CFD) tiene sus propias limitaciones, por lo que los modelos de daño a los glóbulos rojos deben simplificarse para que la simulación sea computacionalmente viable. Estas simplificaciones, en ocasiones, pueden hacer que la simulación represente el daño de forma inexacta, ya sea sobreestimándolo o sin considerar aspectos vitales como la turbulencia.

Detalles del artículo

Cómo citar
Gutiérrez García, A., & Lopez, A. (2025). Análisis de las propiedades hemodinámicas e índices de hemólisis en bombas de sangre mediante CFD. Anales De Ingeniería Mecánica, 1(24). https://doi.org/10.63450/aim.1.247.2025
Sección
Artículos

Citas

M. Di Cesare et al., “The Heart of the World,” Glob. Heart, vol. 19, no. 1, p. 11, doi: 10.5334/gh.1288.

E. F. Gajkowski, G. Herrera, L. Hatton, M. Velia Antonini, L. Vercaemst, and E. Cooley, “ELSO Guidelines for Adult and Pediatric Extracorporeal Membrane Oxygenation Circuits,” ASAIO J., vol. 68, no. 2, p. 133, Feb. 2022, doi: 10.1097/MAT.0000000000001630.

B. Treml, R. Breitkopf, Z. Bukumirić, M. Bachler, J. Boesch, and S. Rajsic, “ECMO Predictors of Mortality: A 10-Year Referral Centre Experience,” J. Clin. Med., vol. 11, no. 5, Art. no. 5, Jan. 2022, doi: 10.3390/jcm11051224.

S. Zeibi Shirejini, J. Carberry, Z. K. McQuilten, A. J. C. Burrell, S. D. Gregory, and C. E. Hagemeyer, “Current and future strategies to monitor and manage coagulation in ECMO patients,” Thromb. J., vol. 21, no. 1, p. 11, Jan. 2023, doi: 10.1186/s12959-023-00452-z.

“Successful cardiac resuscitation with extracorporeal membrane oxygenation in the setting of persistent ventricular fibrillation: A case report,” ResearchGate, Oct. 2024, doi: 10.1186/1756-0500-7-782.

C. A. Thunberg, B. D. Gaitan, F. A. Arabia, D. J. Cole, and A. M. Grigore, “Ventricular Assist Devices Today and Tomorrow,” J. Cardiothorac. Vasc. Anesth., vol. 24, no. 4, pp. 656–680, Aug. 2010, doi: 10.1053/j.jvca.2009.11.011.

M. Behbahani et al., “A review of computational fluid dynamics analysis of blood pumps,” Eur. J. Appl. Math., vol. 20, no. 4, pp. 363–397, Aug. 2009, doi: 10.1017/S0956792509007839.

S. Wang, B. P. Griffith, and Z. J. Wu, “Device-Induced Hemostatic Disorders in Mechanically Assisted Circulation,” Clin. Appl. Thromb., vol. 27, p. 1076029620982374, Jan. 2021, doi: 10.1177/1076029620982374.

H. J. Eisen, “Left Ventricular Assist Devices (LVADS): History, Clinical Application and Complications,” Korean Circ. J., vol. 49, no. 7, pp. 568–585, Jun. 2019, doi: 10.4070/kcj.2019.0161.

“Ventricular Assist Device | Baylor Medicine.” Accessed: Feb. 07, 2025. [Online]. Available: https://www.bcm.edu/healthcare/specialties/transplant/heart-transplant/ventricular-assist-device

K. H. Fraser, T. Zhang, M. E. Taskin, B. P. Griffith, and Z. J. Wu, “A Quantitative Comparison of Mechanical Blood Damage Parameters in Rotary Ventricular Assist Devices: Shear Stress, Exposure Time and Hemolysis Index,” J. Biomech. Eng., vol. 134, no. 081002, Aug. 2012, doi: 10.1115/1.4007092.

M. Massoudi and J. F. Antaki, “An Anisotropic Constitutive Equation for the Stress Tensor of Blood Based on Mixture Theory,” Math. Probl. Eng., vol. 2008, no. 1, p. 579172, 2008, doi: 10.1155/2008/579172.

E. Fatahian, N. Kordani, and H. Fatahian, “A Review on Rheology of Non-Newtonian Properties of Blood,” IIUM Eng. J., vol. 19, no. 1, pp. 237–250, Mar. 2018, doi: 10.31436/iiumej.v19i1.826.

M. Nikfar, M. Razizadeh, J. Zhang, R. Paul, Z. J. Wu, and Y. Liu, “Prediction of mechanical hemolysis in medical devices via a Lagrangian strain-based multiscale model,” Artif. Organs, vol. 44, no. 8, pp. E348–E368, 2020, doi: 10.1111/aor.13663.

M. E. Taskin, K. H. Fraser, T. Zhang, C. Wu, B. P. Griffith, and Z. J. Wu, “Evaluation of Eulerian and Lagrangian Models for Hemolysis Estimation,” ASAIO J., vol. 58, no. 4, p. 363, Aug. 2012, doi: 10.1097/MAT.0b013e318254833b.

M. Trias, A. Arbona, J. Massó, B. Miñano, and C. Bona, “FDA’s Nozzle Numerical Simulation Challenge: Non-Newtonian Fluid Effects and Blood Damage,” PLOS ONE, vol. 9, no. 3, p. e92638, Mar. 2014, doi: 10.1371/journal.pone.0092638.

F. Fiusco, “Computational modelling of blood flow in medical assist devices,” 2023, Accessed: Jan. 13, 2025. [Online]. Available: https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-326501

S. Peter Klinken, “Red blood cells,” Int. J. Biochem. Cell Biol., vol. 34, no. 12, pp. 1513–1518, Dec. 2002, doi: 10.1016/S1357-2725(02)00087-0.

A. Glenn and C. E. Armstrong, “Physiology of red and white blood cells,” Anaesth. Intensive Care Med., vol. 20, no. 3, pp. 170–174, Mar. 2019, doi: 10.1016/j.mpaic.2019.01.001.

M. M. Faghih and M. K. Sharp, “Modeling and prediction of flow-induced hemolysis: a review,” Biomech. Model. Mechanobiol., vol. 18, no. 4, pp. 845–881, Aug. 2019, doi: 10.1007/s10237-019-01137-1.

S. P. Sutera, “Flow-induced trauma to blood cells.,” Circ. Res., vol. 41, no. 1, pp. 2–8, Jul. 1977, doi: 10.1161/01.RES.41.1.2.

N. M. Burton and L. J. Bruce, “Modelling the structure of the red cell membrane,” Biochem. Cell Biol., vol. 89, no. 2, pp. 200–215, Apr. 2011, doi: 10.1139/O10-154.

O. K. Baskurt, M. R. Hardeman, and M. W. Rampling, Handbook of Hemorheology and Hemodynamics. IOS Press, 2007.

N. F. Zeng and W. D. Ristenpart, “Mechanical response of red blood cells entering a constriction,” Biomicrofluidics, vol. 8, no. 6, p. 064123, Dec. 2014, doi: 10.1063/1.4904058.

A. P. McNamee and M. J. Simmonds, “Red Blood Cell Sublethal Damage: Hemocompatibility Is not the Absence of Hemolysis,” Transfus. Med. Rev., vol. 37, no. 2, p. 150723, Apr. 2023, doi: 10.1016/j.tmrv.2023.03.001.

R. P. Rother, L. Bell, P. Hillmen, and M. T. Gladwin, “The Clinical Sequelae of Intravascular Hemolysis and Extracellular Plasma HemoglobinA Novel Mechanism of Human Disease,” JAMA, vol. 293, no. 13, pp. 1653–1662, Apr. 2005, doi: 10.1001/jama.293.13.1653.

“Definition of epitope - NCI Dictionary of Cancer Terms - NCI.” Accessed: Jan. 04, 2025. [Online]. Available: https://www.cancer.gov/publications/dictionaries/cancer-terms/def/epitope

J. S. Olson, E. W. Foley, C. Rogge, A.-L. Tsai, M. P. Doyle, and D. D. Lemon, “No scavenging and the hypertensive effect of hemoglobin-based blood substitutes,” Free Radic. Biol. Med., vol. 36, no. 6, pp. 685–697, Mar. 2004, doi: 10.1016/j.freeradbiomed.2003.11.030.

A. B. V. McMichael, L. M. Ryerson, D. Ratano, E. Fan, D. Faraoni, and G. M. Annich, “2021 ELSO Adult and Pediatric Anticoagulation Guidelines,” ASAIO J., vol. 68, no. 3, p. 303, Mar. 2022, doi: 10.1097/MAT.0000000000001652.

H. Yu, S. Engel, G. Janiga, and D. Thévenin, “A Review of Hemolysis Prediction Models for Computational Fluid Dynamics,” Artif. Organs, vol. 41, no. 7, pp. 603–621, 2017, doi: 10.1111/aor.12871.

M. Giersiepen, L. J. Wurzinger, R. Opitz, and H. Reul, “Estimation of Shear Stress-related Blood Damage in Heart Valve Prostheses - in Vitro Comparison of 25 Aortic Valves,” Int. J. Artif. Organs, vol. 13, no. 5, pp. 300–306, May 1990, doi: 10.1177/039139889001300507.

D. Arora, “Computational hemodynamics: Hemolysis and viscoelasticity,” Ph.D., 2006. Accessed: Jan. 31, 2025. [Online]. Available: https://www.proquest.com/docview/305270174/abstract/340B1F1939114DFBPQ/1

P. Wu, “Recent advances in the application of computational fluid dynamics in the development of rotary blood pumps,” Med. Nov. Technol. Devices, vol. 16, p. 100177, Dec. 2022, doi: 10.1016/j.medntd.2022.100177.

W. Piątkiewicz, M. Szwast, and A. Moskal, “A New Method for Assessing Haemolysis in a Rotary Blood Pump Using Large Eddy Simulations (LES),” Chem. Process Eng. 2017 Vol 38 No 2 231-239, 2017, Accessed: Jan. 23, 2025. [Online]. Available: https://journals.pan.pl/dlibra/doccontent?id=105872

P. Wu, Q. Gao, and P.-L. Hsu, “On the representation of effective stress for computing hemolysis,” Biomech. Model. Mechanobiol., vol. 18, no. 3, pp. 665–679, Jun. 2019, doi: 10.1007/s10237-018-01108-y.

A. Poorkhalil, G. Amoabediny, H. Tabesh, M. Behbahani, and K. Mottaghy, “A New Approach for Semiempirical Modeling of Mechanical Blood Trauma,” Int. J. Artif. Organs, vol. 39, no. 4, pp. 171–177, Apr. 2016, doi: 10.5301/ijao.5000474.

K. Naito, K. Mizuguchi, and Y. Nosé, “The Need for Standardizing the Index of Hemolysis,” Artif. Organs, vol. 18, no. 1, pp. 7–10, 1994, doi: 10.1111/j.1525-1594.1994.tb03292.x.

M. E. James, D. V. Papavassiliou, and E. A. O’Rear, “Use of Computational Fluid Dynamics to Analyze Blood Flow, Hemolysis and Sublethal Damage to Red Blood Cells in a Bileaflet Artificial Heart Valve,” Fluids, vol. 4, no. 1, Art. no. 1, Mar. 2019, doi: 10.3390/fluids4010019.

“Development of a Hemolysis Model with Sublethal Hemoglobin Release.” Accessed: Feb. 07, 2025. [Online]. Available: https://www.proquest.com/docview/2515583059?fromopenview=true&pq-origsite=gscholar&sourcetype=Dissertations%20&%20Theses

J. S. Raval et al., “The use of the mechanical fragility test in evaluating sublethal RBC injury during storage,” Vox Sang., vol. 99, no. 4, pp. 325–331, 2010, doi: 10.1111/j.1423-0410.2010.01365.x.

S. J. Hund, J. F. Antaki, and M. Massoudi, “On the representation of turbulent stresses for computing blood damage,” Int. J. Eng. Sci., vol. 48, no. 11, pp. 1325–1331, Nov. 2010, doi: 10.1016/j.ijengsci.2010.09.003.

K. H. Fraser, M. E. Taskin, B. P. Griffith, and Z. J. Wu, “The use of computational fluid dynamics in the development of ventricular assist devices,” Med. Eng. Phys., vol. 33, no. 3, pp. 263–280, Apr. 2011, doi: 10.1016/j.medengphy.2010.10.014.

G. Alfonsi, “Reynolds-Averaged Navier–Stokes Equations for Turbulence Modeling,” Appl. Mech. Rev., vol. 62, no. 040802, Jun. 2009, doi: 10.1115/1.3124648.

D. M. Israel, “The myth of URANS,” J. Turbul., vol. 24, no. 8, pp. 367–392, Aug. 2023, doi: 10.1080/14685248.2023.2225140.

L. Antiga and D. A. Steinman, “Rethinking turbulence in blood,” Biorheology, vol. 46, no. 2, pp. 77–81, Mar. 2009, doi: 10.3233/BIR-2009-0538.

J.-D. Huo, P. Wu, L. Zhang, and W.-T. Wu, “Large eddy simulation as a fast and accurate engineering approach for the simulation of rotary blood pumps,” Int. J. Artif. Organs, vol. 44, no. 11, pp. 887–899, Nov. 2021, doi: 10.1177/03913988211041636

Artículos más leídos del mismo autor/a