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Accurately modeling contact interactions in mechanical systems with complex geometries is a 
critical step towards predicting the dynamic response of the system. In particular, toroidal surfaces 
are especially challenging in contact mechanics due to their nontrivial geometry involving both 
convex and concave surfaces, which often results in complex contact interactions when dealing with 
planar surfaces or other curved bodies. Such shapes frequently appear in several engineering 
applications, including tires, seals, and various ring components. Hence, the present study focuses 
on developing a robust and computationally efficient methodology to simulate the contact dynamics 
between a toroidal surface and a plane by employing a penalty-based compliant force model. This 
work not only provides a framework for the standalone modeling of toroidal-plane interactions, but 
also demonstrates broader applicability to systems with more complex surfaces in which some parts 
can be approximated by toroidal geometry. 

The toroidal surface is represented parametrically, involving a set of two angular parameters: one 
defining the angle along the torus cross-section and another denoting the rotation around the axis 
of the torus. The proposed procedure facilitates the precise location of points on the torus geometry 
and enables the use of efficient contact detection methods. Unlike simpler geometries, such as 
spheres or ellipsoids, the torus requires specialized techniques to accurately identify the contact 
points and assess pseudo-penetration during contact scenarios. In order to address these 
challenges, the torus surface is discretized into multiple slices, each treated as a local cylindrical 
approximation. This slicing approach simplifies the contact region analysis while preserving the 
geometric fidelity. The interaction between the torus and the plane is evaluated for each slice, and 
suitable normal and tangential contact force models are adopted. The normal forces are computed 
using a Hunt and Crossley-based model, which takes into account the properties of the contacting 
materials, such as stiffness and damping, while the tangential forces are evaluated with a 
regularized static friction model.  

The methodology developed in the context of this work is applied to the dynamic simulation of a 
generic toroidal body contacting a fixed plane. The obtained results highlight the system's sensitivity 
to key parameters, including the stiffness and damping of the contact interface and the number of 
slices utilized to discretize the torus geometry. While increasing the number of slices improves the 
system’s accuracy, it also leads to an increase in the computational cost, imposing a trade-off 
between precision and efficiency. Additionally, the proposed approach has been able to capture the 
complex variations in contact regions as the torus orientation changes, showcasing its versatility in 
handling dynamic scenarios. Future work will focus on refining the model, exploring different 
contact models, and extending its application to more complex multibody systems. In addition, the 
extension of this work to supertoroidal shapes is intended. 
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1. Introduction 
Accurate modeling of the contact interactions in mechanical systems with complex geometries is essential for 
predicting their dynamic behavior, including secondary effects such as deformations, vibrations, friction, and wear. 
In computational mechanics, and particularly within the framework of multibody dynamics simulations, the 
mathematical representation of surface geometries plays a crucial role in determining the accuracy and realism of 
the simulation results. Parametric surface representations are particularly valuable in this context, as they allow 
for precise and continuous descriptions of three-dimensional shapes without the need to generate excessively 
detailed mesh-based models. Such formulations are widely utilized in several applications ranging from computer 
graphics and animation to physical simulations and virtual prototyping [1]. 

While classical geometric models often rely on simple shapes such as spheres, cylinders, or flat planes, these forms 
are frequently insufficient to capture the true behavior of components in real-world circumstances. Many 
engineering problems involve interactions between bodies with more intricate geometries, where oversimplified 
approximations can lead to significant inaccuracies in both contact detection and force evaluation. Among these 
more complex surfaces, toroidal geometries are particularly noteworthy due to their prevalence in practical 
applications [2-5]. Components such as tires, gaskets, seals, and various types of rings or bearings commonly 
exhibit toroidal features. Their continuous curvature, combining both convex and concave regions, presents unique 
challenges in the context of contact modeling. 

In the framework of multibody dynamics, contact modeling using penalty-based approaches is widely adopted to 
simulate the interactions between bodies [6-8]. These models impose contact constraints by introducing forces 
proportional to the interpenetration depth, typically coupled with a damping term to account for energy dissipation. 
Their popularity is associated with their conceptual simplicity, ease of implementation, and computational 
efficiency, particularly when contact stiffness is moderate. Such methods have been successfully applied to bodies 
with various shapes, including spherical, ellipsoidal, and superellipsoidal geometries, with numerous contact 
scenarios examined in the scientific literature [9-11]. However, despite the practical importance of toroidal 
surfaces, they have received comparatively less attention over the years, likely due to the increased complexity 
involved in both contact detection and contact force evaluation. 

The primary difficulty lies in the torus’s doubly-curved structure, which complicates the accurate determination 
of contact points, especially when interacting with other curved geometries. Efficient and robust strategies for 
handling toroidal contacts are therefore essential to guarantee physically meaningful simulations without incurring 
in excessive computational cost. Moreover, there is a growing need to develop generalized techniques that can 
scale to more complex surface representations, where toroidal approximations may serve as useful local 
alternatives. 

The present paper addresses these challenges by proposing a physically consistent methodology to simulate the 
dynamic interaction between a toroidal surface and a planar surface. A parametric representation of the torus is 
adopted, allowing for precise localization of surface points. The torus is discretized into a set of slices, each 
approximated locally as a cylindrical patch, facilitating efficient contact detection and force evaluation. A Hunt 
and Crossley-based model is employed for the computation of normal contact forces, while tangential interactions 
are modeled using a regularized friction law. 

The remainder of this paper is organized as follows. Section 2 presents the mathematical formulation of the toroidal 
surface geometry. Section 3 describes the proposed methodology for contact detection and contact force 
evaluation. Section 4 demonstrates the approach through numerical simulations and discusses the influence of key 
parameters. Finally, Section 5 summarizes the main conclusions and outlines directions for future work. 

2. Toroidal Geometry Definition 
A torus is a three-dimensional geometric surface generated by the revolution of a circle around an axis that lies in 
the same plane as the circle but does not intersect it. This operation results in a closed surface with axial symmetry, 
commonly visualized as a ring-shaped object. The geometry of a torus is characterized by two radii, the major 
radius, 𝑅𝑅, which represents the distance from the axis of rotation to the center of the circle, and the minor radius, 
r, which corresponds to the radius of the revolving circle. The implicit form of the torus surface, defined in a local 
reference system (ξT, ηT, ζT), and represented in Figure 1, can be written as 

 ( )
2

22 2
T T T

T T T, , 1 0
R

F
r r

ξ η ζ
ξ η ζ

 + −   = + − =     
 (1) 

Note that this implicit formulation assumes the axis of revolution is aligned with the ζT axis of the local coordinate 
system, and that the center of the torus lies at the origin of that coordinate system (see Figure 1).  
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Figure 1: General representation of a torus surface. 

In order to fully define the position and orientation of the torus surface, which belongs to a given body i, in the 
three-dimensional space in a general case, it is required to specify the location of the torus center and the unit 
vector along the axis of revolution, vi, which coincides with the ζT local axis. This generalization of the location 
and orientation of the torus significantly complicates the use of the implicit surface formulation. Moreover, this 
representation is not convenient for the contact detection methodology adopted in the context of this work.  

Instead, the torus surface can be treated as a parametrized surface, in which any point P located at that surface can 
be fully described by a set of two angular parameters, that is, θ defines the angle along the circular cross-section 
and ϕ denotes the rotation around the axis of the torus, as depicted in Figure 1. Based on these parameters the 
location of the point P in the torus local coordinate system can be defined as 
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where, θP and ϕP represent the angular parameters corresponding to point P. 

 
Figure 2: Representation of the location of an arbitrary point P on the torus surface. 

Having this in mind, and following the representation of Figure 2, the location of point P on the torus surface that 
belongs to body i, can be established in global coordinates as 

 T T,P i P= + +r r s s  (3) 
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in which ri is the vector defining the location of the body i reference frame in global coordinates, sT represents the 
location of the torus center with respect to body i reference system in global coordinates, and sT,P denotes the 
location of point P with respect to the torus center in global coordinates and can be expressed by 

 T, T T,P i P′′=s A A s  (4) 

where Ai is the transformation matrix associated with body i reference system, and AT denotes the transformation 
matrix from the torus local reference system to the body i coordinate system which can be defined as 

 T i i i=   A m n v  (5) 

where mi, ni and vi denote unit vectors along the ξT, ηT and ζT directions, respectively, in body i local coordinates. 

Since the position of an arbitrary point is parametrized, it is possible to analytically derive the expressions for the 
tangent and normal vectors at that point. These vectors are especially useful in the contact detection process and 
in the correct application of contact forces. The tangent vectors, depicted in Figure 3, can be obtained in the torus 
local coordinate system by computing the partial derivatives of Eq. (2) as 
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and, hence, transformed into tangent unit vectors as 
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Then, the normal unit vector of the torus surface at point P can be calculated as 
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These vectors can be expressed in the global coordinate system by pre-multiplying Eqs. (8)-(10) by the 
transformation matrix AiAT. 

 
Figure 3: Representation of the normal and tangent vectors to the torus surface. 
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3. Contact Modeling 
The methodology adopted in this work to model the contact between toroidal and planar surfaces is based on a 
regularized approach, in which the contact interaction is treated as a continuous process. In this context, the bodies 
are allowed to locally deform, which is quantified through the computation of a pseudo-penetration between the 
undeformed geometries. Accordingly, a methodology to estimate the pseudo-penetration and locate the contact 
points is required to accurately determine both the direction and magnitude of the resulting contact forces. 

Having that in mind, given the geometric complexity of the torus, which contains both convex and concave regions, 
its surface is divided into Ns equally-sized slices to facilitate the contact detection process. Hence, the contact is 
checked between each slice s of the torus belonging to a given body i and the planar surface of body j, as 
schematized in Figure 4. While the torus is defined by its two radii, the position of its center, the unit vector along 
its symmetry axis and the number of slices, the planar surface can be simply defined by any point Pj on the plane 
and its normal unit vector, nP. 

 
Figure 4: Schematic representation of the torus discretization and contact detection methodology. 

In this framework, the total contact force is assumed to be the sum of the individual contact forces developed at 
each contacting slice. The penetration for each slice is evaluated by analyzing the intersection between the 
circumference that describes its middle section and the plane. The center of the slice s, denoted by point Cs, is 
defined through the angular parameter, ϕs, which denotes the rotation around the axis of the torus, as 

 T T
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sin
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s
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i i i s

R
R
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 
 = + +  
 
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In order to help promote the contact detection process, the normal vector of the plane is projected onto the plane 
that contains the middle section of the torus slice. Hence, the normal vector to this middle section must be 
computed. From the observation of Figure 3, it can be concluded that this vector coincides with the tangent vector 
in the ϕ direction given by Eq. (9) and denoted as tϕ,s. Finally, the normal unit vector, nP, projected onto the middle 
section plane can be estimated as 

 T
P, P P , ,s s sφ φ= −n n n t t  (12) 

Using this vector, the location of the potential contact point on the middle section of the slice s, Qi,s can be 
determined by subtracting the torus radius in that direction from the center point as 

 P,

P,

s s sQ C
i i

s

r= −
n

r r
n

 (13) 

Then, the distance between this point and the contacting plane can be computed as 

 ( )T
P

sQ P
s i jd = −n r r  (14) 

where P
jr  represents the location of point P on the plane belonging to body j in global coordinates. The evaluation 

of Eq. (13) allows to determine if there is penetration between the slice s and the plane. If ds is positive, the 
corresponding slice does not contact the plane. In turn, if ds holds a negative value, penetration exists with equal 
magnitude (δs = - ds). In that case, the location of the corresponding contact point on the planar surface, Qj,s, can 
be calculated as 

 P
s sQ Q

j i sδ= +r r n  (15) 

Once the location of the contact points is known, their global velocities can be computed, which are necessary to 
estimate the penetration velocity for each slice s as follows 

Cs


Pn
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 ( )T

P
s sQ Q

s j iδ = −r r n    (16) 

where sQ
ir and sQ

jr  denote the linear velocity of the contact points on the torus and the plane, respectively. In a 
similar way, the relative tangential velocity between contact points can be evaluated as 

 t, P
s sQ Q

s j i sδ= − −v r r n   (17) 

These kinematic quantities are required for the subsequent computation of the contact forces. In what concerns the 
normal force, a Hertzian-based contact force model is considered in this work. Specifically, the classical Hertzian 
contact law is extended with the addition of a damping term to represent viscoelastic behavior, accounting for 
energy dissipation without assuming permanent deformation. Hunt and Crossley [12] were the precursors in this 
modeling approach and proposed describing the normal force in the following form 

 n
n nf kδ χδ δ= +   (18) 

where k is the contact stiffness, n is an exponent that defines the degree of nonlinearity, and χ is the hysteresis 
damping factor. This damping term has been the subject of extensive research during the past decades [13, 14], 
and it commonly based on the estimation of the initial impact velocity. That feature makes extremely important to 
determine the exact instant in which the contact begins, requires a careful handling of the impact velocity values 
when dealing with variable time step and multiple contacts, and starts to lose meaning for long continuous contacts. 
These drawbacks may complicate the implementation of the contact model and create numerical problems. To 
avoid these issues, a constant hysteresis damping factor is considered in this work as 

 ( )n 1nf kδ χδ= +   where  
k
χχ =  (19) 

It must be noted that the previous expression must be employed to calculate the normal force contribution for each 
slice using the corresponding kinematic quantities. In order to estimate the contact stiffness, the torus slice is 
approximated by a cylindrical segment [15], which is a reasonable assumption when the number of slices is 
sufficiently large. Accordingly, the normal stiffness is defined based on the elastic foundation theory, which treats 
the contact as volume supported by an array of independent distributed springs. In this way, the normal contact 
force developed in slice s is computed as 

 ( )
*

3/2
n,

2
1s

s s s
E rL

f
h

δ χδ= +   (20) 

in which h is the characteristic depth of the elastic foundation contributing to normal contact stiffness, Ls denotes 
the length of the contacting cylinder, i.e., the slice thickness which depends on the level of discretization, and E* 
represents the composite modulus of the two colliding bodies, which can be calculated as 

 
122

* 11 ji

i j

E
E E

νν
−

 −−
= +  
 

 (21) 

where Ei and Ej correspond to the Young’s moduli, and νi and νj express the Poisson’s ratios of bodies i and j, 
respectively. 

Since Eq. (20) provides the magnitude of the normal force only, its vector form can be expressed as 

 n, n, Ps sf=f n  (22) 

Regarding the tangential contact forces, it is assumed that there is dry frictional contact between both contacting 
surfaces. Bearing that in mind, a continuous static friction model is utilized here [16], in which the Coulomb 
friction is considered. In order to avoid numerical issues associated with the discontinuity of friction force when 
the relative tangential velocity is close to zero, a regularized approach is adopted to smooth that transition. The 
tangential force can be computed as 

 ( ) ( )t , C, t t , t ,tanh sgns s s sf k=f v v  (23) 

where kt defines the slope of the friction curve near zero velocity, and fC,s denotes the magnitude of Coulomb 
friction for slide s, given by 

 C, k n,s sf fµ=  (24) 

in which µk represents the kinetic coefficient of friction. 
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Finally, the contact forces determined by Eqs. (22) and (23) must be applied at the contact points identified in Eqs. 
(13) and (15). These forces are then included as external forces in the Newton-Euler equations of motion for the 
multibody mechanical system to which torus-plane contact belongs. 

4. Example of Application  
In order to demonstrate the effectiveness of the proposed methodology, an example of application is presented in 
this section. A simple multibody system without any kinematic constraints is considered, i.e., a free-falling torus 
impacting a fixed horizontal plane, as illustrated in Figure 5. In this context, two cases are analyzed: one in which 
the torus’s reference frame is aligned with the plane’s reference system (see Figure 5a), and another where the 
torus is rotated 60º around the x-axis (see Figure 5b). 

   
 (a) (b) 

Figure 5: Representation of the simulated application cases: (a) free-falling torus starting from a horizontal 
position, and (b) free-falling torus starting with a 60º rotation. 

In the first configuration, the torus maintains a perfect alignment with the plane, resulting in an uniform contact 
where all slices simultaneously impact the plane, and frictional forces are negligible. In contrast, the second 
configuration introduces a more generic and realistic contact scenario, where the inclination of the torus induces 
uneven contact and promotes the development of frictional effects. 

In both cases, the initial position of the center of mass of the torus is 50 mm above the plane. The time integration 
of the equations of motion is performed using a variable time-step scheme with MATLAB’s ode15s solver, with 
a reporting time step of 10-5 s. The total simulation time is 1 s. The geometrical and material properties used in the 
simulations are summarized in Table 1, while the contact model parameters are listed in Table 2. 

Table 1: Material and geometrical properties considered in the simulations. 
Property Value 

Torus Major Radius, R 25 mm 
Torus Minor Radius, r 5 mm 

Torus Mass 9.68 ×10-2 kg 
Torus Mass Moment of Inertia, Iξξ 3.90×10-5 kg·m2 
Torus Mass Moment of Inertia, Iηη 3.90×10-5 kg·m2 
Torus Mass Moment of Inertia, Iζζ 6.23×10-5 kg·m2 

Torus Young’s Modulus, Ei 210 GPa 
Torus Poisson Ratio, νi 0.3 

Plane Young’s Modulus, Ej 10 GPa 
Plane Poisson Ratio, νj 0.3 

Table 2: Parameters selected for the developed contact methodology . 
Property Value 

Number of Slices, Ns 36 
Force exponent, n 1.50 

Characteristic depth, h 1.00 m 
Hysteresis Damping Factor, χ̅  0.05 

Slope of friction curve, kt 1000 s/m 
Kinetic Coefficient of Friction, µk 0.20 

For the first simulation case, corresponding to a horizontally aligned free-falling torus, the uniform contact 
condition causes all slices to contact the plane simultaneously, leading to purely vertical motion. Consequently, 
frictional forces were neglected by setting the coefficient of friction to zero. This scenario was tested with different 
values for the hysteresis damping factor to evaluate its effect on energy dissipation. As shown in Figure 6a, the 
proposed methodology ensures energy conservation when the damping factor is set to zero. Furthermore, the 
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results presented in Figure 6 demonstrate that the methodology produces stable and consistent behavior across the 
different damping values tested. This is evidenced by the regular oscillation of the torus height after each impact, 
with a consistent level of energy loss that reflects the selected damping factor. 

 
 (a) (b) 

Figure 6: Results for the first simulation scenario with different damping factors: (a) variation of mechanical 
energy, and (b) vertical position of the torus center of mass. 

For the second simulation case, involving a torus falling with an initial angle of 60º relative to the plane, the 
trajectory of the center of mass of the torus is displayed in Figure 7a, in which 36 slices were considered. The 
initial position is marked in blue and gradually transitions to red as time progresses towards the final position. The 
time interval between two consecutive points on the plot is 2 ms. This scenario was simulated using different 
numbers of slices to discretize the torus surface, starting with 9 slices and doubling the number successively up to 
144 slices (see Figures 7b, 7c and 7d). The computational cost associated with each discretization level is shown 
in Figure 8, where the CPU time ratio is compared across all cases. 

   
 (a) (b) 

   
 (c) (d) 

Figure 7: Results for the second simulation scenario: (a) trajectory of the torus center of mass, (b) variation of 
mechanical energy for different number of slices, (c) trajectory of the torus center of mass for different 

number of slices, and (d) zoomed view of trajectory of the torus center of mass. 
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Figure 8: CPU time ratio of the simulations performed with different number of slices. 

The results indicate a direct and clear influence of the number of slices on the computational cost. Although the 
increase in CPU time is not strictly proportional to the increase in the number of slices, a strong correlation is 
evident. While fewer slices significantly reduce computation time, the results also show that it may lead to unstable 
or inaccurate dynamic behavior, as demonstrated by the divergence observed in the case with 18 slices and, more 
significantly, in the case with 9 slices. As shown in Figures 7c and 7d, beyond a certain number of slices, further 
increasing the discretization does not yield substantial improvements in the dynamic response, suggesting the 
existence of an optimal balance between accuracy and computational efficiency. 

5. Concluding Remarks 
In this work, a new methodology was proposed for modeling contact interactions between toroidal and planar 
surfaces within a multibody dynamics framework. The approach relies on a regularized contact force model based 
on pseudo-penetration evaluation, employing a parametric representation of the torus and a slicing strategy to 
simplify contact detection and force computation. A Hunt and Crossley-based normal force model, combined with 
a regularized Coulomb friction law for tangential interactions, was adopted to simulate the dynamic response of 
contacting bodies. The complete formulation for point localization, surface parametrization, tangent and normal 
vector evaluation, and contact force computation was presented in detail. 

Preliminary application cases involving the free fall of a torus impacting a plane were simulated to demonstrate 
the potential and effectiveness of the developed methodology. The results highlighted the model’s capability to 
produce stable dynamic responses for different contact configurations and discretization levels. Although the initial 
results are promising, further testing is required to fully assess the robustness of the approach, particularly under 
more complex contact scenarios involving higher impact velocities, rolling contacts, and multiple bodies. Future 
work will focus on expanding the range of applications to more general and challenging cases. 
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